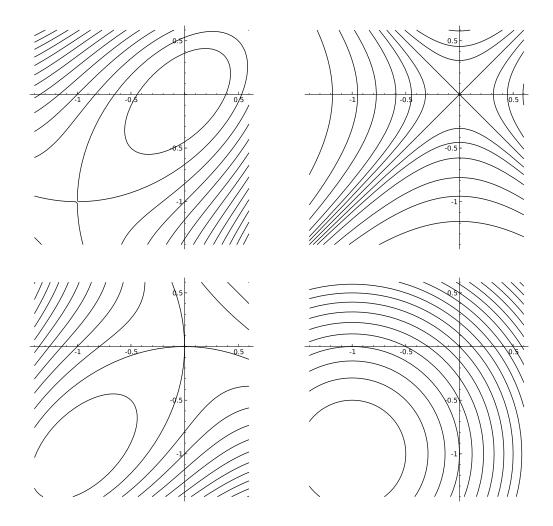
- 1. Consider the function $f = x^3 + y^3 + 3xy$.
 - (a) It turns out the critical points of f are (0,0) and (-1,-1). Classify them into local mins, local maxes, and saddles. **(4 points)**
 - (b) Based on your answer in (a), circle the correct contour diagram of f. (1 point)



- 2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 2x + y^2 2y$.
 - (a) Use Lagrange multipliers to find the max and min of *f* on the circle $x^2 + y^2 = 8$. (6 points)
 - (b) Consider the region *D* where $x^2 + y^2 \le 8$. Explain why *f* must have a global min and max on *D*. (2 points)
 - (c) Find the global min and max of f on D. (3 points)
- 3. Let *C* be the portion of a helix parameterized by

 $\mathbf{r}(t) = (\cos(2t), -\sin(2t), 9-t) \text{ for } 0 \le t \le 2\pi.$

(a) Circle the correct sketch of *C* below: (2 points)

- (b) Compute the length of *C*. (5 points)
- (c) Suppose *C* is made of material with density given by $\rho(x, y, z) = x + z$. Give a line integral for the mass of *C*, and reduce it to an ordinary definite integral (something like $\int_0^1 t^2 \sin t \, dt$). (3 points)
- 4. Let *C* be the curve parameterized by $\mathbf{r}(t) = (e^t, t)$ for $0 \le t \le 1$, and consider the vector field $\mathbf{F} = (1, 2\gamma)$.
 - (a) Circle the picture of **F** below: (2 points)

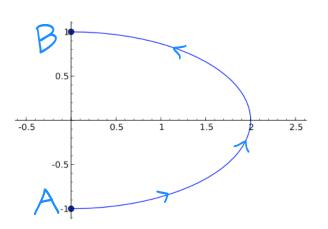
·				-							-																			
	N	1	X	*	★1	+	*	1	1	'	1	'	1	'	1	1	'	1	'	1	'	1	'	1	1	1	'	'	1	'
	`	ζ,		*	*	-	*	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	,	`	Ĵ		*	-	*	1	1	1	1	*	,	*	-	1	*	*	*	,	1	1	1	1	1	1	1	1	1	1
	X	`	Ĵ	*	•	-	*	1	1	1								+							0.5				*	
	X					-	,	1	1	1	+	*	+	*		+	*	*	*	-									*	
	<u>۱</u>	7	×		- 1																				I					
	1.34.																													
	-1 4 - -1	1	-0.5	*	*	+		0.5	1	¥								0.5 ►			-1	*	-0.5	*	*	*	•).5 ►	*	1
	Ň	N	1	*	*	-	*	1	1	/ //	+	+	+	*	-	+	+	+	*	4										
	X	X	× ×	*	• 0.5	*	* *	1	1) }	+	+	+	*	-	+	+		*	4	×	×	×	*	*	*	×	*	*	¥
	X	X	× ×	*	• 0.5	*	* *	1	1) }	+ *	+ 7	+ 1	+ 7	-9-5	+ 7	+ 7	+ 7	+ 7	• •	* *	* *	* *	* *	• -0.5 •	*	* *	* *	* *	7 1
		× × ×	* * *	* * *	• -0.5 •	+ + +	* * *	1 1 1	1 1 1) } }	+ + + +				- 95 1	+ + +		+ + + + + + + + + + + + + + + + + + + +		• • •	* *	* *	* *	* *	• -0.5 •	*	* *	* *	* *	7 1
		× × ×	* * *	* * *	• -0.5 •	+ + +	* * *	1 1 1	1 1 1) } }	+ + + +				- 95 1	+ + +		+ + + + + + + + + + + + + + + + + + + +		• • •	* *	* *	* *	* *	• -0.5 •	*	* *	* *	* *	7 1
		× × ×	* * *	* * *	• -0.5 •	*	* * *	1 1 1	1 1 1) } }	+ + + +				- 95 1	+ + +		+ 7		• • •	* *	* *	* *	* *	• -0.5 •	*	* *	* *	*	7 1

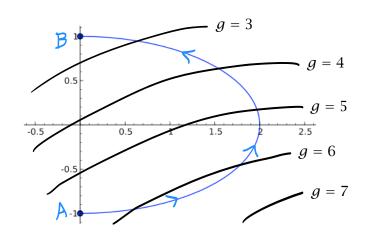
- (b) Directly compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (5 points)
- (c) The vector field **F** is conservative. Find $f: \mathbb{R}^2 \to \mathbb{R}$ so that $\nabla f = \mathbf{F}$. (2 points)
- (d) Use your answer in (c) to check your answer in (b). (2 points)

positive

- 5. Let *C* be the portion of the ellipse $\frac{x^2}{4} + y^2 = 1$ between A = (0, -1) and B = (0, 1) which is shown below left.
 - (a) Give a parameterization **r** of *C*, indicating the domain so that it traces out precisely the segment indicated. (**3 points**)
 - (b) Let *L* be the line segment joining *B* to *A*. Give a parameterization $\mathbf{f}: [0,1] \to \mathbb{R}^2$ of *L* so that $\mathbf{f}(0) = B$ and $\mathbf{f}(1) = A$. (2 points)
 - (c) Suppose $g: \mathbb{R}^2 \to \mathbb{R}$ is a function whose level sets are indicated below right. Circle the sign of $\int_C g \, ds$ (1 point)

negative





0