Math 351 - Elementary Topology

Friday, November 9 ** Exam 2 Review Problems

- 1. Give an example of subspaces $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^n$, for some *n*, together with a continuous bijection $f : A \longrightarrow B$ which is *not* a homeomorphism.
- 2. Show that if $f : X \longrightarrow Y$ is a homeomorphism and $A \subseteq X$, then Int (f(A)) = f(Int A).
- 3. Let $f : X \longrightarrow Y$ be an embedding.
 - (a) Prove or disprove: If *Y* is Hausdorff, so is *X*.
 - (b) Prove or disprove: If *X* is Hausdorff, so is *Y*.
- 4. Show that if $A \subseteq X$ is closed and $B \subseteq Y$ is also closed, then $A \times B \subseteq X \times Y$ is closed. Use **only** the definition of the product topology. In other words, you may *not* use that $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 5. Let (x_n) and (y_n) be sequences in the spaces *X* and *Y*, respectively. Show that $x_n \to x$ and $y_n \to y$ if and only if $(x_n, y_n) \to (x, y)$ in $X \times Y$.
- 6. Let $X = \mathbb{R}_{\ell} \times \mathbb{R}$ and let $L \subseteq X$ be a line. Describe the topology on *L* inherited from *X*. Hint: the answer depends on the slope of *L*.
- 7. Let $X \times Y$ be partitioned into the subsets $X \times \{y\}$, one partition for each $y \in Y$. Show that the resulting quotient $(X \times Y)^*$ is homeomorphic to Y.
- 8. Give an example of a quotient map $q : X \rightarrow Y$ such that q is *not* an open map.
- 9. Let $Z \subseteq \mathbb{R}^2$ be the union of the two coordinate axes. Define $q : \mathbb{R}^2 \twoheadrightarrow Z$ by

$$q(x,y) = \begin{cases} (x,0) & x \neq 0\\ (0,y) & x = 0. \end{cases}$$

- (a) Show that *q* is *not* continuous if *Z* is given the subspace topology.
- (b) Describe the resulting quotient topology on *Z*. What would be a basis for this topology? Is it Hausdorff?
- 10. Show that a hexagon with opposite edges glued together with a flip yields \mathbb{RP}^2 .

Solutions.

1. There are many possibilities, but one example that was mentioned in class is $A = [0, 1] \cup (2, 3]$ and B = [0, 2], with the continuous bijection $f : A \longrightarrow B$ defined by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ x - 1 & \text{if } 2 < x \le 3 \end{cases}$$

The function *f* is clearly a bijection (an inverse is $g : B \longrightarrow A$ defined by g(y) = y if $0 \le y \le 1$ aand g(y) = y + 1 if $1 < y \le 2$.) Also, *f* is continuous by the glueing lemma because its restrictions to the closed subsets [0, 1] and (2, 3] are continuous. However, *f* is not a homeomorphism because the subset (2, 3] is closed in *A*, whereas f((2, 3]) = (1, 2] is not closed in B = [0, 2].

2. Since *f* is a homeomorphism f(Int(A)) is open in *Y*. Also, since $Int(A) \subseteq A$, it follows that $f(Int(A)) \subseteq f(A)$. Since Int(f(A)) is the largest open subset in f(A), it follows that

$$f(\operatorname{Int}(A)) \subseteq \operatorname{Int}(f(A)).$$

It remains to show the other inclusion. Let us write V = Int(f(A)) and let $y \in V \subseteq f(A)$. Then we can write y = f(x) for some $x \in A$. We must show that $x \in \text{Int}(A)$. Since y = f(x) is in *V*, it follows that *x* is in the set $U = f^{-1}(V)$. Since *f* is continuous, *U* is open. Also, since $V \subseteq f(A)$, it follows that

$$U = f^{-1}(V) \subseteq f^{-1}(f(A)) = A.$$

Note that we have used that f is injective to get the last equality. We now have $x \in U \subseteq A$. Since U is open, this implies that $x \in Int(A)$. Thus $y = f(x) \in f(Int(A))$. We have demonstrated that

$$\operatorname{Int}(f(A)) \subseteq f(\operatorname{Int}(A)).$$

3. (a) This is true. Let x_1 and x_2 be distinct points in X. The embedding f is injective, so $f(x_1)$ and $f(x_2)$ are distinct points in Y. Let V_1 and V_2 be disjoint neighborhoods of these points in Y. Then $U_1 = f^{-1}(V_1)$ and $U_2 = f^{-1}(V_2)$ are disjoint neighborhoods of x_1 and x_2 in X, so X is Hausdorff.

(b) This is false. Let *X* be any Hausdorff space, like X = (0,1), for example. Let *W* be any nonHausdorff space, like $W = \mathbb{R}/(0,\infty)$. Then take *Y* to be the disjoint union $Y = X \amalg W$ and let $f : X \longrightarrow Y$ be the inclusion $f = i_1$. The inclusion a space into the disjoint union with another space is always an embedding. But *Y* is not Hausdorff because the points 0 and $\overline{1}$ in $W \subseteq Y$ do not have disjoint neighborhoods.

4. Let $A \subseteq X$ and $B \subseteq Y$ be closed. Then the complements $U = X \setminus A$ and $V = Y \setminus B$ are open. We wish to show that $A \times B$ is closed in $X \times Y$, which means that the complement is open. The complement is

$$(X \times Y) \setminus (A \times B) = (U \times Y) \cup (X \times V).$$

The two sets on the right are basis elements in the product topology, so their union is open. It follows that $A \times B$ is closed.

5. (\Rightarrow) Assume $x_n \rightarrow x$ and $y_n \rightarrow y$. Let *W* be a neighborhood of (x, y) in $X \times Y$. Then there is a basic neighborhood

$$(x,y) \in U \times V \subseteq W.$$

Since $x_n \to x$ and $x \in U$, some tail of the sequence (x_n) is in U. Suppose $\{x_n \mid n > M\} \subseteq U$. Similarly, $y_n \to y$ and $y \in V$, so a tail of this sequence is in V. Suppose $\{y_n \mid n > N\} \subseteq V$. Then if $n > K = \max\{M, N\}$, it follows that $(x_n, y_n) \in U \times V \subseteq W$. In other words, we have shown that a tail of the sequence (x_n, y_n) is in W, so $(x_n, y_n) \to (x, y)$.

(\Leftarrow) Recall that the projections $\pi_1 : X \times Y \longrightarrow X$ and $\pi_2 : X \times Y \longrightarrow Y$ are continuous. Recall also that continuous functions preserve convergence of sequences. So if $(x_n, y_n) \rightarrow (x, y)$ it follows that

$$(x_n) = \pi_1(x_n, y) \to \pi_1(x, y) = x$$

and similarly

$$(y_n) = \pi_2(x_n, y) \to \pi_2(x, y) = y.$$

6. Suppose first that the line *L* is a vertical line. A basic open set in $\mathbb{R}_{\ell} \times \mathbb{R}$ is of the form $[a, b) \times (c, d)$. Intersecting this basic open set with a vertical line x = e will give either an empty set if $e \notin [a, b)$ or an interval $\{e\} \times (c, d)$ if $e \in [a, b)$. It follows that the induced topology on this vertical line is the *standard* topology.

Suppose now that the line L is not vertical. Then the intersection of a basic open as described above with the line L will result in either (1) an empty set or (2) an open interval on the line or (3) a half-open interval on the line. See the figures below.

It follows that the induced topology on the line *L* is the lower limit topology.

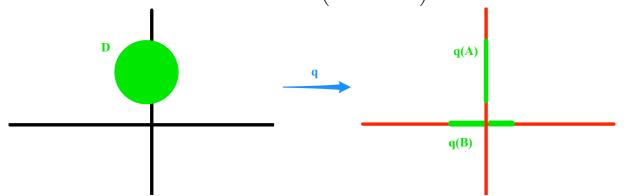
7. Since there is one partition for each $y \in Y$, it it clear that the set $(X \times Y)^*$ is in bijection with *Y* and that the quotient map $q : X \times Y \longrightarrow (X \times Y)^*$ can be modeled as the projection $X \times Y \longrightarrow Y$. It only remains to verify that the topology agrees with the topology of *Y*. A subset $U \subseteq (X \times Y)^* = Y$ is open if and only if $q^{-1}(U) = X \times U$ is open in $X \times Y$. The projection map $\pi_2 : X \times Y \longrightarrow Y$ is continuous and open, so it follows that $U \subseteq Y$ is open if and only if $X \times U = \pi_2^{-1}(U) \subseteq X \times Y$ is open. 8. Consider the quotient $q : \mathbb{R} \longrightarrow \mathbb{R}/[0,1]$. Then $(0,1) \subseteq \mathbb{R}$ is open, but q(0,1) is the collapsed point $\overline{0}$ in the quotient. The set $q^{-1}(\overline{0}) = [0,1] \subseteq \mathbb{R}$ is closed but not open, so $\overline{0}$ is closed and not open in the quotient.

9. (a) The subset $U = \{0\} \times (1,2) \subseteq Z$ is open in the subspace topology, but the preimage $q^{-1}(U) = \{0\} \times (1,2) \subseteq \mathbb{R}^2$ is not open (it is nonempty but does not contain *any* open discs).

(b) As is shown in the textbook, applying the map q to the basis for \mathbb{R}^2 will provide a basis for the quotient topology on Z.

Let *D* be an open disc in \mathbb{R}^2 that does not meet the *y*-axis. Then q(Z) is simply an open interval on the *x*-axis in *Z* that does not contain the origin.

Now let *D* be an open disc in \mathbb{R}^2 that intersects the *y*-axis nontrivially. Then we can write $D = A \cup B$, where $A = D \cap (\{0\} \times \mathbb{R})$ and *B* is the complementary piece $B = D \setminus A$. Then q(A) = A, but q(B) is the union of intervals $((a, 0) \cup (0, b)) \times \{0\}$, where a < 0 and b > 0.



So any point on the *x*-axis (including the origin) will have neighborhoods as in the subspace topology, but neighborhoods of points in the *y*-axis necessarily include positive and negative intervals on the *x*-axis.

The space *Z* with the quotient topology is *not* Hausdorff because no two points on the *y*-axis can have disjoint neighborhoods.

10. No cutting-and-pasting is needed for this problem. Recall that the projective plane was originally defined as the quotient of the square, in which opposite sides are identified with a flip. We saw that this was the same as a disc with the two sides of the boundary circle identified with a flip. The hexagon description agrees with both of these, without any cutting-and-pasting.

