Group: _

Math 351 - Elementary Topology

Wednesday, December 5 ** One-point Compactification

A **compactification** of a space *X* is a compact space *Z* together with an embedding $X \hookrightarrow Z$ such that *X* is dense in *Z*. Pictured to the right are two compactifications of an open interval.

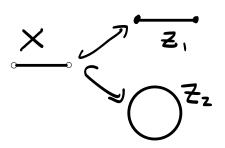
Given any space *X*, define a new space $X_+ = X \cup \{\infty\}$ as follows:

- every open subset $U \subseteq X$ is considered open in X_+
- The neighborhoods *V* of the new point ∞ are the subsets such that *X* \ *V* is *compact*.

It can be shown that if *X* is Hausdorff then this defines a topology on X_+ , and it is clear that *X* is a subspace of X_+ .

- 1. Assume the above defines a topology on X_+ . Show that X_+ is compact.
- 2. What space is \mathbb{R}_+ ? What are \mathbb{R}^2_+ and \mathbb{R}^n_+ ?
- 3. What is $[(0,1) \cup (2,3)]_+$?
- 4. Assume *X* is **not** compact. Show that *X* is dense in X_+ . What is another description of X_+ if *X* is already compact?

Write your answer(s) on the rest of this sheet (and back).



Name: