Group: _

Name: _____

Math 351 - Elementary Topology

Wednesday, September 26 ** The subspace topology

The problems below concern the subspace topology. Recall that if *X* is a topological space and $A \subseteq X$ is a subset, we define the **subspace topology** on *A* by specifying that a subset

 $V \subset A$ is open $\Leftrightarrow V = U \cap A$ for some open set $U \subset X$.

Make sure to justify all of your answers.

- 1. (1 **point**) Show that if *X* is Hausdorff and $A \subseteq X$, then *A* is also Hausdorff if it is given the subspace topology.
- 2. (2 points) Let

$$A \subseteq X$$
 and $B \subseteq A$.

Then *A* can be considered as a subspace of *X* and *B* can be considered as a subspace of *A*. But *B* can *also* be considered as a subspace of *X*. **Show that** the two resulting subspace topologies on *B* (one coming from *A* and the other from *X*) are in fact the same topology.

Write your answer(s) on the rest of this sheet (and back).