Name:

Group:

Math 351 - Elementary Topology

Wednesday, October 3 ** Continuous functions

The problems below concern continuous functions. Recall that $f : X \longrightarrow Y$ is continuous if for every open set $U \subset Y$, the preimage $f^{-1}(U)$ is open in X. Make sure to justify all of your answers.

1. (2 **points**) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined as

$$f(x) = \begin{cases} x & x \ge 0\\ x - 1 & x < 0. \end{cases}$$

Show that f is continuous when considered as a function

 $f: \mathbb{R}_{\ell\ell} \longrightarrow \mathbb{R}.$

($\mathbb{R}_{\ell\ell}$ is \mathbb{R} with the "lower-limit", or half-open, topology.) Feel free to use the result from class that *f* is continuous if and only if it is continuous at every $c \in \mathbb{R}_{\ell\ell}$.

2. (2 points) Let $f, g : X \longrightarrow Y$ be continuous, and suppose that Y is Hausdorff. Show that if $D \subset X$ is *dense* in X and f(d) = g(d) for all $d \in D$, then necessarily f(x) = g(x) for all $x \in X$. In other words, show that if f and g agree on a dense subset, then they agree everywhere.

Write your answer(s) on the rest of this sheet (and back).

Solutions.

1. Let's first consider continuity at some point other than 0.

Case I: c > 0. Then let *U* be any neighborhood of f(c) = c. We may assume that *U* is a basis element (a, b), and by shrinking the neighborhood if necessary we may assume a > 0. Then $f^{-1}((a, b)) = (a, b)$, which is open in $\mathbb{R}_{\ell\ell}$.

Case II: c < 0. We may consider an interval (a, b) containing f(c) = c - 1, and we may assume b < -1. Then $f^{-1}((a, b)) = (a + 1, b + 1)$, which is again open in $\mathbb{R}_{\ell\ell}$.

Case III: c = 0. Let (a, b) be a neighborhood of f(0) = 0. Again, we are free to shrink the neighborhood, so we may assume a > -1. Then $f^{-1}((a, b)) = [0, b)$, which is open in $\mathbb{R}_{\ell\ell}$.

2. Let $D \subseteq X$ be a dense subset on which the functions f and g agree and let $x \in X$ be any point.

Let us assume, for a contradiction, that $f(x) \neq g(x)$ in *Y*. Since *Y* is Hausdorff, this means we can find disjoint neighborhoods *U* and *V* of f(x) and g(x), respectively. Since *f* is continuous, $f^{-1}(U)$ is a neighborhood of *x* in *X*. Similarly, $g^{-1}(V)$ is a neighborhood of *x* in *X*. It follows that their intersection

$$W = f^{-1}(U) \cap g^{-1}(V)$$

is also a neighborhood of *x* in *X*. Since *D* is dense, it follows that $D \cap W$ is nonempty. Let $d \in D \cap W$. Since $d \in D$, we have f(d) = g(d). On the other hand, $f(d) \in U$ and $g(d) \in V$. Since f(d) = g(d), this contradicts the fact that *U* and *V* are disjoint. \oint