Group:

Math 351 - Elementary Topology

Wednesday, October 24 ** Products and the Hausdorff condition

- 1. Show that if *X* and *Y* are Hausdorff spaces, then so is their product $X \times Y$.
- 2. Show that *X* is Hausdorff if and only if the diagonal subset

$$\Delta(X) = \{(x, y) \in X^2 \mid x = y\} \subseteq X \times X$$

is closed.

3. Let $f, g: X \longrightarrow Y$ be continuous, and suppose that Y is Hausdorff. Show that if $D \subset X$ is *dense* in X and f(d) = g(d) for all $d \in D$, then necessarily f(x) = g(x) for all $x \in X$. Hint: This was on a previous worksheet, but it now follows easily from problem 2 above.

Write your answer(s) on the rest of this sheet (and back).

Solutions.

1. Let (x, y) and (x', y') be distinct points in $X \times Y$. This means that either $x \neq x'$ or $y \neq y'$ (or both). Without loss of generality, we assume $x \neq x'$. Then, since X is Hausdorff, this means we can find disjoint neighborhoods U and U' of x and x' in X. It follows that $U \times Y$ and $U' \times Y$ are disjoint neighborhoods of (x, y) and (x', y').

Name:

2. (\Rightarrow) Assume *X* is Hausdorff. We will show that $X \times X \setminus \Delta(X)$ is open. Let $(x, y) \notin \Delta(X)$. This means that $x \neq y$. So there must be disjoint neighborhoods *U* and *V* of *y*. Then $U \times V$ is a neighborhood of (x, y) in $X \times X$, and it does not meet $\Delta(X)$, since if $(z, z) \in \Delta(X) \cap (U \times V)$, this would mean that $z \in U \cap V$, which would contradict that $U \cap V = \emptyset$.

(\Leftarrow) Assume $\Delta(X)$ is closed. Let $x \neq y$ be distinct points in X. Then (x, y) lies in the open set $(X \times X) \setminus \Delta(X)$. By the definition of the product topology, this means that we can find a basic open set $U \times V$ with

$$(x,y) \in U \times V \subseteq (X \times X) \setminus \Delta(X).$$

The fact that $U \times V$ misses the diagonal says precisely that $U \cap V$ is empty.

3. Let *f* and *g* be as described in the statement of the problem. Consider $\Delta(Y) \subseteq Y \times Y$. Since *Y* is Hausdorff, by problem 2 we know this diagonal subset is closed. The function $(f,g) : X \longrightarrow Y \times Y$ is continuous by the universal property of products. We conclude that

$$(f,g)^{-1}(\Delta(Y)) = \{x \in X \mid f(x) = g(x)\}$$

is closed in *X*. Since this closed set contains the dense set *D*, this closed set must be all of *X*.