Group: _

Name: ____

Math 351 - Elementary Topology

Wednesday, November 28 ** Connectedness

The following are equivalent ways of stating that a space *X* is **connected**

- The only nonempty closed and open subset $U \subseteq X$ is X itself.
- If $X = U \amalg V$ with U and V both open, then either U or V is empty.

Define an equivalence relation \sim on *X* by $x \sim y$ if there exists a *connected* subset of *X* that contains both *x* and *y*.

The equivalence class \overline{x} of $x \in X$ is called the "connected component" of x in X.

- 1. Show that the relation defined above is transitive.
- 2. Show that a "connected component" is in fact connected.
- 3. Show that \mathbb{R}_{fc} has only one component (in other words, show it is a connected space).
- 4. Find an example of a space *X* and a connected component $C \subset X$ such that *C* is *not* open in *X*. (The components are always closed, however.)

Solutions.

- 1. Suppose that $x \sim y$ and $y \sim z$. Then there is some connected subset $C \subseteq X$ with $x, y \in C$ and also a connected subset $D \subseteq X$ such that $y, z \in D$. Then $y \in C \cap D$, so in particular $C \cap D$ is nonempty. By a result from class, we conclude that the union $C \cup D$ is also connected. Since x and z are in $C \cup D$, it follows that $x \sim z$.
- 2. Again, the idea is to take a union. Let $x \in X$. We wish to show the component \overline{x} is connected. By definition, $y \in \overline{x}$ if and only if $y \in C$ for some connected subset $C \subset X$ containing x. This means that we can write

$$\overline{x} = \bigcup_{\substack{C \ni x, \\ C \text{ connected}}} C.$$

The intersection of all of these connected sets *C* is nonempty since *x* lies in each *C*. By the same result from class, we conclude that the union of all of these *C*'s, in other words the component \overline{x} , is connected.

- 3. Suppose that $W \subseteq \mathbb{R}_{fc}$ is open and closed and nonempty. Since *W* is open and nonempty, the complement $\mathbb{R} W$ is finite. On the other hand, *W* is closed and so must either be finite or all of \mathbb{R} . *W* cannot be finite since its complement is finite. So the only possibility is $W = \mathbb{R}$.
- 4. An example is $X = \mathbb{Q}$. Any subset $A \subseteq \mathbb{Q}$ containing at least two points is disconnected. The reason is that if *z* is any irrational number between those two chosen points, then $(-\infty, z) \cap A$ and $(z, \infty) \cap A$ give a separation of *A*. It follows that the connected components in \mathbb{Q} are the singletons.