Math 351 - Elementary Topology Friday, December 7 ** Final Exam Review Problems

- 1. Given a space *X* and points *x* and *y* in *X*, a **path** from *x* to *y* is a continuous map γ : $[0,1] \longrightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Show that if every pair of points in *X* can be connected by a path, then *X* is connected.
- 2. Define a subset $X \subseteq \mathbb{R}^2$ as

$$X = \left\{ (x, \sin(1/x) \mid x \in \left(0, \frac{2}{\pi}\right] \right\}$$

and let $Z = X \cup (\{0\} \times [-1, 1]).$

- (a) Show that *Z* is connected.
- (b) **Challenge problem:** Show that there is no path from (0,0) to $(\frac{2}{\pi},1)$ in *Z*.
- 3. In $\mathbb{R}_{\ell\ell}$, show there is no (continuous) path from 0 to 1.
- 4. Show that the punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$ is connected. Use this to show that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .
- 5. Prove that S^1 is not homeomorphic to \mathbb{R} .
- 6. Prove that neither S^1 nor \mathbb{R} are homeomorphic to S^2 .
- 7. Prove that neither S^1 nor \mathbb{R} are homeomorphic to the torus T^2 .
- 8. Show that [0, 1] is not compact in the lower limit topology.
- 9. Consider $A = \{1/n \mid n \in \mathbb{N}\}$. This is homeomorphic to the subset

$$B = \left\{ \left(\cos\left(\frac{\pi}{n}\right), \sin\left(\frac{\pi}{n}\right) \right) \mid n \in \mathbb{N} \right\} \subseteq S^1.$$

Let $C = \overline{B}$ be the closure of *B* in S^1 . Describe the topology on *C* and find all connected components of *C*.