
Math 351 - Elementary Topology
Monday, October 8 ⇤⇤ Exam 1 Review Problems

1. Say U ✓ R is open if either it is finite or U = R. Why is this not a topology?

2. Let X = {a, b}.

(a) If X is equipped with the trivial topology, which functions f : X �! R are continu-
ous? What about functions g : R �! X?

(b) If X is equipped with the topology {∆, {a}, X}, which functions f : X �! R are
continuous? What about functions g : R �! X?

(c) If X is equipped with the discrete topology, which functions f : X �! R are contin-
uous? What about functions g : R �! X?

3. Given an example of a topology on R (one we have discussed) that is not Hausdorff.

4. Show that if A ⇢ X, then ∂A = ∆ if and only if A is both open and closed in X.

5. Give an example of a space X and an open subset A such that Int(A) 6= A.

6. Let A ⇢ X be a subspace. Show that C ⇢ A is closed if and only if C = D \ A for some
closed subset D ⇢ X.

7. Show that the addition function f : R2 �! R, defined by f (x, y) = x + y, is continuous.

8. Give an example of a function f : R �! R which is continuous only at 0 (in the usual
topology). Hint: Define f piecewise, using the rationals and irrationals as the two pieces.

Solutions.
1. This fails the union axiom. Any singleton set would be open. The set N is a union of single-
ton sets and so should also be open, but it is not. So this is not a topology.

2. X = {a, b}.
a) X has the trivial topology: Only constant functions X �! R are continuous, since if f (a) 6=
f (b), then U = R \ { f (b)} is open in R, but f

�1(U) = {a} would not be open in X. On the
other hand, every function R �! X is continuous by homework problem 4.1(b).
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b) X has the topology {∆, {a}, X}: This is the same as part a). If f : X �! R is not constant,
then U = R \ { f (a)} is open in R, but f

�1(U) = {b} is not open in X. For a function f : R �!
X, the only requirement for it to be continuous is that f

�1(a) is open in R. So for each open set
U ✓ R, there is a continuous function f : R �! X defined by

f (x) =

⇢
a x 2 U

b x /2 U.

c) X has the discrete topology: By homework problem 4.1(a), every function X �! R is con-
tinuous. The only continuous functions g : R �! X are the constant functions. To see this,
note that {a} is both open and closed in X. So g

�1({a}) must also be closed and open in R.
But the only closed and open sets in R are ∆ and R (this was the challenge problem on HW1).
If g

�1({a}) = ∆, this means g is constant at b, and if g

�1({a}) = R, this means g is constant at a.

3. The cofinite topology on R is not Hausdorff: if U is a neighborhood of 0 and V is a neighbor-
hood of 1, then the complements A = R \U and B = R \V are finite. But then the complement
of U \ V is A [ B, which is also finite. since U \ V has finite complement, it is in particular
nonempty. This shows that R

c f

is not Hausdorff.

4. Let A ⇢ X.
()) Suppose ∂A = ∆. Since ∂A = A \ Int(A), this means that A = Int(A). But we always have
the inclusions

Int(A) ⇢ A ⇢ A,

so combining this with

A ⇢ A = Int(A) and A = Int(A) ⇢ A

gives the identifications
A = Int(A) and A = A.

In other words, A is closed and open.
(() If A is closed and open, then A = Int(A) and A = A, so

∂(A) = A \ Int(A) = A \ A = ∆.

5. For this problem, it is enough to find a space X with an open dense set A, since then the
closure of A will be X and therefore open. An example would be any set X (at least two points)
with a particular point topology. Then let A be any set containing the particular point but not
equal to all of X.

6. Let A ⇢ X be a subspace.
()) Assume C ⇢ A is closed. This means that if we let U = A \ C, then U = V \ A for some
open V ⇢ X. Then D = X \ V is closed in X and

C = A \ U = A \ (V \ A) = A \ ((X \ D) \ A) = A \ (A \ (D \ A)) = D \ A.



(() Assume C = D \ A for some closed D ⇢ X. Then V = X \ D is open in X and

A \ C = A \ (D \ A) = A \ ((X \ V) \ A) = A \ (A \ (V \ A)) = V \ A.

This means that A \ C is open, so C must be closed.

7. Let f : R2 �! R be the addition function given by f (x, y) = x + y. Let (a, b) ✓ R be a basic
open set. We need to show that f

�1((a, b)) is open in R2. This is the intersection of the two
diagonal half-planes

U = {(x, y) | x + y < b} and V = {(x, y) | x + y > a}.

We already saw earlier in the course that half-planes like these are open in R2, but here is the
argument for V.
Suppose (x, y) 2 V. By translating the in the x-direction by a quantity of �a and then rotating
by 45� clockwise, we find that the distance of the point (x, y) from the line x + y = a is

p
2

2
(x + y � a).

So we may take a ball with center (x, y) and radius
p

2
2 (x + y � a) as a neighborhood of (x, y)

in V.

8. Here is a function f : R �! R that is continuous only at x = 0. We define

f (x) =

⇢
x x 2 Q

0 x /2 Q.

Then if U = (a, b) is a neighborhood of f (0) = 0, we have 0 2 V = (a, b) ✓ f

�1(U). This
shows f is continuous at 0.
On the other hand, let c 6= 0. For simplicity, we assume c > 0.
Case I: (c 2 Q): then f (c) = c and U = (0, 2c) is a neighborhood of f (c), but

f

�1(U) = (0, 2c) \ Q

does not contain any neighborhood of c.
Case II: (c /2 Q): then f (c) = 0 and U = (�c/2, c/2) is a neighborhood of 0. But f

�1(U) does
not contain any neighborhood of c since it does not contain any points from (c/2, c) \ Q.


