Math 551 - Topology I Homework 2 Fall 2013

- 1. Let (X, d) be a metric space and let $x \in X$. Define $d_x : X \longrightarrow \mathbb{R}$ by $d_x(y) = d(x, y)$. Show that d_x is continuous (\mathbb{R} has the usual metric).
- 2. In the definition of topological space, we ask only for *finite* intersections of open sets to be open. Give an example of an infinite intersection of open sets which is no longer open.
- 3. (a) (The cofinite topology) Let *X* be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is finite. Show that this defines a topology on *X*.
 - (b) (The cocountable topology) Let *X* be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is countable. Show that this defines a topology on *X*.
 - (c) In the case $X = \mathbb{R}$, how do these relate to each other and to the usual topology ?
- 4. (a) (Generic point topology) Let *X* be a set, and fix a special point $x_0 \in X$. Declare a nonempty subset $U \subseteq X$ to be open in *X* if and only if $x_0 \in U$. Show that this gives a topology on *X*.
 - (b) (Excluded point topology) Let *X* be a set, and fix a special point $x_0 \in X$. Declare a proper subset $U \subset X$ to be open if and only if $x_0 \notin U$. Show that this gives a topology on *X*.
- 5. Show that if *Y* is a set equipped with the trivial topology and *X* is any space, then every function $f : X \longrightarrow Y$ is continuous.
- 6. Find all topologies on the set $X = \{0, 1, 2\}$.
- 7. (Vertical interval topology) Define \mathcal{B} to be the collection of vertical open intervals in \mathbb{R}^2 , namely, sets of the form

$$\{(a, x) \mid b < x < c\}$$

for fixed *a*, *b*, *c*. Show that this defines a basis for a topology on \mathbb{R}^2 . How is this topology related to the standard topology?