Math 551 - Topology I Homework 4 Fall 2013

- 1. Consider the topology on \mathbb{R} given by the subbasis consisting of open intervals (a, ∞) .
 - (a) Given a subset $A \subseteq \mathbb{R}$, describe the closure \overline{A} in this topology.
 - (b) Consider the sequence $x_n = n$. Does it converge? If so, to what?
 - (c) Show that the sequence lemma holds in this topology. That is, if $x \in \overline{A}$, then some sequence in *A* converges to *x*.

This is an example of a non-Hausdorff space in which the sequence lemma holds.

- 2. (a) Show that for any two spaces *X* and *Y*, the projection map *p_X* : *X* × *Y* → *X* is *open*.
 (b) Find an example to show that the projection *p_X* need not be closed.
- 3. Show that a space *X* is Hausdorff if and only if the diagonal subset

$$\Delta(X) = \{(x, x)\} \subseteq X \times X$$

is closed.

- 4. Recall that if *I* is a set and we have $X_i = X$ for each $i \in I$, then the product $\prod_i X_i$ can be identified with the collection of functions $f : I \longrightarrow X$. Consider this as a space with the product topology. Show that $(f_n) \rightarrow f$ in this topology if and only if the functions converge to *f* pointwise.
- 5. Let $\mathcal{Z} \subseteq \mathbb{R}^{\mathbb{N}}$ be the subset consisting of sequences which are eventually zero (in other words, only finitely many of the entries are nonzero). Find the closure of \mathcal{Z} in $\mathbb{R}^{\mathbb{N}}$ under the box and product topologies
- 6. Let $A_i \subseteq X_i$ be a subspace for each $i \in I$. Show that the subspace topology on

$$\prod_{i\in I}A_i\subseteq\prod_{i\in I}X_i$$

coincides with the product topology (and therefore not, in general, with the box topology)