Math 551 - Topology I Homework 9 Fall 2013

- 1. Fill in the details to show that \mathbb{RP}^n is an *n*-manifold.
- 2. Recall that for any $P \in S^1$, the punctured circle $U_P = S^1 \setminus \{P\}$ is homeomorphic to \mathbb{R}^1 .
 - (a) Pick two points $P, Q \in S^1$ and cover S^1 by U_P and U_Q . Find a partition of unity subordinate to this cover.
 - (b) Following the embedding theorem from class, this gives an embedding $E : S^1 \hookrightarrow \mathbb{R}^4$. Describe the map $S^1 \longrightarrow \mathbb{R}^2$ obtained by using the first two coordinates of this embedding. Following notation from the proof of the embedding theorem, this would be the map

$$(f_1\varphi_1, f_2\varphi_2): S^1 \longrightarrow \mathbb{R}^2.$$

In particular, you should show that this is *not* an embedding.

- 3. Show that if *Y* is a metric space, *A* is any space, and C(A, Y) is given the topology coming from the uniform metric, then the evaluation map ev : $C(A, Y) \times A \longrightarrow Y$ is continuous.
- 4. Show that if *X* and *Y* are any spaces and *A* is discrete, then

$$\mathcal{C}(X \times A, Y) \cong \mathcal{C}(X, Y^A)$$

if Y^A is given the product topology. (Hint: You may find problem 2 from HW 5 helpful.)

- 5. Suppose that *Y* is Hausdorff and *A* is any space. Show that Map(A, Y) is Hausdorff.
- 6. Let *X* and *Y* be any spaces. Let $g : Y \longrightarrow Z$ be a continuous map to a third space *Z*. Show that composition with *g* defines a continuous function

$$G: \operatorname{Map}(X, Y) \longrightarrow \operatorname{Map}(X, Z), \qquad G(f) = g \circ f.$$

- 7. (*) Let *Z* be locally compact Hausdorff and $q : X \longrightarrow Y$ a quotient map. This describes an alternate proof that $q \times id_Z$ is a quotient map.
 - (a) Let *Q* be the quotient space defined by the map $\langle q \rangle = q \times id_Z$, and let $d : X \times Z \longrightarrow Q$ be the quotient map. Show that there is a continuous bijection $f : Q \longrightarrow Y \times Z$ with $f \circ d = \langle q \rangle$.
 - (b) Define $g = f^{-1}$. Let

$$G: Y \longrightarrow Map(Z, Q)$$
 and $D: X \longrightarrow Map(Z, Q)$

be adjoint to *g* and *d*, respectively. Show that $D = G \circ q$.

(c) Show that *Q* is continuous. Conclude that *G* and therefore *g* are also continuous. This shows that *f* is a homeomorphism, so that $\langle q \rangle$ is a quotient.