
26. Mon, Oct. 25

Definition 26.1. We say that a space is locally compact if every x 2 X has a compact neigh-
borhood (recall that we do not require neighborhoods to be open).

This looks di↵erent from our other “local” notions. To get a statement in the form we expect,
we introduce more terminology A ✓ X is precompact if A is compact.

Proposition 26.2. Let X be Hausdor↵. TFAE

(1) X is locally compact
(2) every x 2 X has a precompact neighborhood
(3) X has a basis of precompact open sets

Proof. It is clear that (3) ) (2) ) (1) without the the Hausdor↵ assumption, so we show that
(1) ) (3). Suppose X is locally compact and Hausdor↵. Let V be open in X and let x 2 V . We
want a precompact open neighborhood of x in V . Since X is locally compact, we have a compact
neighborhood K of x, and since X is Hausdor↵, K must be closed. Since V and K are both
neighborhoods of x, so is V \K. Thus let x 2 U ✓ V \K. Then U ✓ K since K is closed, and U
is compact since it is a closed subset of a compact set. ⌅

In contrast to the local connectivity properties, it is clear that any compact space is locally
compact. But this is certainly a generalization of compactness, since any interval in R is locally
compact.

Example 26.3. A standard example of a space that is not locally compact is Q ✓ R. We show
that 0 does not have any compact neighborhoods . Let V be any neighborhood of 0. Then it must
contain (�⇡/n,⇡/n) for some n. Now
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✓
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✓

k

k + 1
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V \ (⇡/n,1), V \ (�1,�⇡/n)
o

is an open cover of V with no finite subcover.

Locally compact Hausdor↵ spaces are a very nice class of spaces (almost as good as compact
Hausdor↵). In fact, any such space is close to a compact Hausdor↵ space.

Definition 26.4. A compactification of a noncompact space X is an embedding i : X ,! Y ,
where Y is compact and i(X) is dense.

Example 26.5. The open interval (0, 1) is not compact, but (0, 1) ,! [0, 1] is a compactification.
Note that the exponential map exp : (0, 1) �! S1 also gives a (di↵erent) compactification.

There is often a smallest compactification, given by the following construction.

Definition 26.6. Let X be a space and define bX = X [ {1}, where U ✓

bX is open if either

• U ✓ X and U is open in X or
• 1 2 U and bX \ U ✓ X is compact.

Proposition 26.7. Suppose that X is Hausdor↵ and noncompact. Then bX is a compactification.
If X is locally compact, then bX is Hausdor↵.

Proof. We first show that bX is a space! It is clear that both ; and bX are open.
Suppose that U

1

and U
2

are open. We wish to show that U
1

\ U
2

is open.

• If neither open set contains 1, this follows since X is a space.
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• If 1 2 U
1

but 1 /2 U
2

, then K
1

= X \U
1

is compact. Since X is Hausdor↵, K
1

is closed in
X. Thus X \K

1

= U
1

\ {1} is open in X, and it follows that U
1

\ U
2

= (U
1

\ {1}) \ U
2

is open.
• If 1 2 U

1

\ U
2

, then K
1

= X \ U
1

and K
2
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are compact. It follows that K
1

[K
2

is compact, so that U
1

\ U
2

= X \ (K
1

[K
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) is open.

• Suppose we have a collection U
i

of open sets. If none contain 1, then neither does
[

i
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and the union is open in X. If 1 2 U
j

for some j, then 1 2
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i
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and

bX \

[

i
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\

i

( bX \ U
i
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\

i

(X \ U
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is a closed subset of the compact set X \ U
j

, so it must be compact.

Next, we show that ◆ : X �!

bX is an embedding. Continuity of ◆ again uses that compact
subsets of X are closed. That ◆ is open follows immediately from the definition of bX.

27. Wed, Oct. 30

Recall from last time that we were in the midst of the proof of the following result:

Proposition 27.1. Suppose that X is Hausdor↵ and noncompact. Then bX is a compactification.
If X is locally compact, then bX is Hausdor↵.

We already showed that bX is a space and that ◆ : X �!

bX is an embedding.
To see that ◆(X) is dense in bX, it su�ces to see that {1} is not open. But this follows from the

definition of bX, since X is not compact.
Finally, we show that bX is compact. Let U be an open cover. Then some U 2 U must contain

1. The remaining elements of U must cover X \U , which is compact. It follows that we can cover
X \ U using only finitely many elements, so U has a finite subcover.

Now suppose thatX is locally compact. Let x
1

and x
2

in bX. If neither is1, then we have disjoint
neighborhoods in X, and these are still disjoint neighborhoods in bX. If x

2

= 1, let x
1

2 U ✓ K,
where U is open and K is compact. Then U and V = bX \K are the desired disjoint neighborhoods
. ⌅
Remark 27.2. Why did we define local compactness in a di↵erent way from local (path)-
connectedness? We could have defined locally connected to mean that every point has a connected
neighborhood , which follows from the actual definition. But then we would not have that locally
connected is equivalent to having a basis of connected open sets. On the other hand, we could try
the x 2 K ✓ U version of locally compact, but of course we don’t want to allow K = {x}, so the
next thing to require is x 2 V ✓ U , where V is precompact. As we showed in Prop 26.2, this is
equivalent to our definition of locally compact in the presence of the Hausdor↵ condition. Without
the Hausdor↵ condition, compactness does not behave quite how we expect.

Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally.

Proposition 27.3. Let X be locally compact Hausdor↵ and let
f : X �! Y be a compactification. Then there is a (unique) quo-
tient map q : Y �!

bX such that q � f = ◆.

Y
q // bX

X
f

__

◆

??

We will need:
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Lemma 27.4. Let X be locally compact Hausdor↵ and f : X �! Y a compactification. Then f is
open.

Proof. Since f is an emebedding, we can pretend that X ✓ Y and that f is simply the inclusion.
We wish to show that X is open in Y . Thus let x 2 X. Let U be a precompact neighborhood of x.
Thus K = cl

X

(U) is compact2 and so must be closed in Y (and X) since Y is Hausdor↵. By the
definition of the subspace topology, we must have U = V \X for some open V ✓ Y . Then V is a
neighborhood of x in Y , and

V = V \ cl
Y

(X) ✓ cl
Y

(V \X) = K ✓ X.

⌅

Proof of Prop. 27.3. We define

q(y) =

⇢

◆(x) if y = f(x)
1 if y /2 f(X).

To see that q is continuous, let U ✓

bX be open. If 1 /2 U , then q�1(U) = f(◆�1(U)) is open by
the lemma. If 1 2 U , then K = bX \ U is compact and thus closed. We have q�1(K) = f(◆�1(K))
is compact and closed in Y , so it follows that q�1(U) = Y \ q�1(K) is open.

Note that q is automatically a quotient map since it is a closed continuous surjection (it is closed
because Y is compact and bX is Hausdor↵). Note also that q is unique because bX is Hausdor↵ and
q is already specified on the dense subset f(X) ✓ Y . ⌅

In categorical language, the one-point compactification is a “terminal object” in the category
of compactifications of X. One might then ask if there is a compactification on “the other side”,
meaning a compactification Y such that any other compactification is a quotient of Y ? We will
come back to this point.

28. Fri, Nov. 1

Let’s turn back to compactness in metric spaces. We already saw (Theorem 25.5) that com-
pactness in a metric space is equivalent to the statement that every sequence has a convergent
subsequence. We also saw that the compact subsets of the metric space Rn are the closed and
bounded ones. Do we have an analogue of the second statement for an arbitrary metric space X?
First, note that closed and bounded is not enough in general to guarantee compactness, as any
infinite discrete metric space shows.

Definition 28.1. We say that a metric space X is totally bounded if, for every ✏ > 0, there is
a finite covering of X by ✏-balls.

It is clear that compact implies totally bounded because, for any fixed ✏ > 0, the B
✏

give an
open covering. This su�ces to handle the discrete metric case, as a discrete metric space is totally
bounded () it is finite () it is compact. However, closed and totally bounded is still not
enough, as [0, 1]\Q is closed and totally bounded (either in Q or in itself) but not compact. Recall
that a metric space is complete if every Cauchy sequence converges in X.

Theorem 28.2. Let X be metric. Then X is compact () X is complete and totally bounded.

2We will need to distinguish between closures in X and closures in Y , so we use the notation cl
X

(A) for closure

rather than our usual A.

45



Proof. ()) We have already mentioned why compactness implies totally bounded. Let (x
n

) be a
Cauchy sequence in X. Then, since X is sequentially compact, a subsequence of (x

n

) converges.
But if x

n

k

! x, then we must also have x
n

! x since x
n

is Cauchy (prove this)! It follows that X
is complete.

(() Suppose now that X is complete and totally bounded. We show that X is sequentially
compact. Let (x

n

) be any sequence in X. Since X is complete, it su�ces to show that (x
n

) has a
subsequence that is Cauchy.

For each n, we have a finite covering of X by k
n

balls of radius 1/n. Start with n = 1. One of
these balls must contain infinitely many x

n

’s and so a subsequence of (x
n

). Now cover X by finitely
many balls of radius 1/2. Again, one of these contains a subsequence of the previous subsequence.
We continue in this way ad infinitum. We obtain the desired Cauchy subsequence as follows. First,
pick x

n1 to be in our original subsequence (in the chosen ball of radius 1). Then pick x
n2 to be in

the subsubsequence in our chosen ball of radius 1/2 (and pick it such that n
2

> n
1

. After (many,
many) choices, we get a subsequence of x

n

such that {x
n

k

}

k�m

is contained in a ball of radius 1/m.
It follows that x

n

k

is Cauchy. ⌅
Theorem 28.3 (Baire “Category” Theorem). Let X be either locally compact Hausdor↵ or com-
plete metric. Then every countable collection of dense open sets has dense intersection.

Proof. See either Munkres, Theorem 48.2 or Lee, Theorem 4.68. ⌅
One standard application of this result is as follows.

Proposition 28.4. Let X be either locally compact Hausdor↵ or complete metric. Suppose that
no singletons in X are open. Then X is uncountable.

Proof. Let {x
n

} be a countable subset of X. We show that C = {x
n

} is a proper subset of X. For
each n, let U

n

= X \ {x
n

}. Then each U
n

is open (X is Hausdor↵) and dense ({x
n

} is not open).

Then
\

n

U
n

is dense and therefore nonempty. But the intersection is precisely the complement of

C. ⌅
Another famous application is the existence of a continuous but nowhere di↵erentiable function

(see §49 of Munkres).

Remark 28.5. Note that if we apply the one-point compactification to a (locally compact) metric
space X, there is no natural metric to put on X, so one might ask for a good notion of compactifi-
cation for metric spaces. Given the result above, this should be related to the idea of a completion
of a metric space. See HW8.

Proposition 28.6. A space X is Hausdor↵ and locally compact if and only if it is homeomorphic
to an open subset of a compact Hausdor↵ space Y .

Proof. ()). We saw that X is open in the compact Hausdor↵ space Y = bX.
(() As a subspace of a Hausdor↵ space, it is clear that X is Hausdor↵. It remains to show

that every point has a compact neighborhood (in X). Write Y1 = Y \X. This is closed in Y and
therefore compact. By Problem 2 from HW7, we can find disjoint open sets x 2 U and Y1 ✓ V in
Y . Then K = Y \ V is the desired compact neighborhood of x in X. ⌅
Corollary 28.7. If X and Y are locally compact Hausdor↵, then so is X ⇥ Y .

Corollary 28.8. Any open or closed subset of a locally compact Hausdor↵ space is locally compact
Hausdor↵.
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