
29. Mon, Nov. 4

Another related concept is that of paracompactness. This is especially important in the theory
of manifolds and vector bundles. We make a couple of preliminary definitions first.

Definition 29.1. If U and W are collections of subsets of X, we say that W is a refinement of
U if every W 2 W is a subset of some U 2 U .

Definition 29.2. An open cover U of X is said to be locally finite if every x 2 X has a neigh-
borhood meeting only finitely many elements of the cover.

For example, the covering {(n, n+ 2) | n 2 Z} of R is locally finite.

Definition 29.3. A space X is said to be paracompact if every open cover has a locally finite
refinement.

From the definition, it is clear that compact implies paracompact. But this really is a general-
ization, as the next example shows.

Proposition 29.4. The space R is paracompact.

Proof. Let U be an open cover of R. For each n � 0, let A
n

= ±[n, n+1] and W
n

= ±(n� 1

2

, n+ 3

2

).
Then A

n

⇢ W
n

, A
n

is compact and W
n

is open. (We take W
0

= (�3

2

, 3
2

).) Fix an n. For each
x 2 A

n

, pick a U
x

2 U with x 2 U
x

, and let V
x

= U
x

\W
n

. The V
x

’s give an open cover of A
n

, and
so there is a finite collection V

n

of V
x

’s that will cover A
n

. Then V =
S

n

V

n

gives a locally finite
refinement of U . (Note that only W

n�1

, W
n

, and W
n+1

meet the subset A
n

). ⌅
This argument adapts easily to show that Rn is paracompact. In fact, something more general

is true. First we make a definition.

Definition 29.5. A space X is said to be second countable if it has a countable basis.

Lemma 29.6. Any open cover of a second countable space has a countable subcover.

Proof. Given a countable basis B and an open cover U , we first replace the basis by the countable
subset B0 consisting of those basis elements that are entirely contained in some open set from the
cover (this is a basis too, but we don’t need that). For each B 2 B

0, pick some U
B

2 U containing
B, and let U 0

✓ U be the (countable) collection of such U
B

. It only remains to observe that U 0 is
still a cover, because

[

U 0

U
B

�

[

B0

B = X.

⌅
Proposition 29.7. Every second countable, locally compact Hausdor↵ space is paracompact.

The proof strategy is the same. The assumptions give you a cover (basis) by precompact sets
and thus a countable cover by precompact sets. You use this to manufacture a countable collection
of compact sets A

n

and open sets W
n

that cover X as above. The rest of the proof is the same.
Note that of the assumptions in the proposition, locally compact and Hausdor↵ are both local

properties, whereas second countable is a global property. As we will see, paracompactness (and
therefore the assumptions in this proposition) is enough to guarantee the existence of some nice
functions on a space.

We finally turn to the so-called “separation axioms”.

Definition 29.8. A space X is said to be

• T
0

if given two distinct points x and y, there is a neighborhood of one not containing the
other
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• T
1

if given two distinct points x and y, there is a neighborhood of x not containing y and
vice versa (points are closed)

• T
2

(Hausdor↵) if any two distinct points x and y have disjoint neighborhoods
• T

3

(regular) if points are closed and given a closed subset A and x /2 A, there are disjoint
open sets U and V with A ✓ U and x 2 V

• T
4

(normal) if points are closed and given closed disjoint subsets A and B, there are disjoint
open sets U and V with A ✓ U and B ✓ V .

Note that T
4

=) T
3

=) T
2

=) T
1

=) T
0

. But beware that in some literature, the “points
are closed” clause is not included in the definition of regular or normal. Without that, we would
not be able to deduce T

2

from T
3

or T
4

.

Proposition 29.9. Any compact Hausdor↵ space is normal.

Proof. This was homework problem 7.2. ⌅
Proposition 29.10. Like the Hausdor↵ condition, regularity is inherited by subspaces but not by
images or quotients.

Example 29.11. We will see that R is normal. But recall the quotient map q : R �! {�1, 0, 1}
which sends any number to its sign. This quotient is not Hausdor↵ and therefore not regular or
normal.

30. Wed, Nov. 6

Proposition 30.1. Let X
i

6= ; for all i. Then
Y

i

X
i

is regular if and only if each X
i

is regular.

Proof. ()) This works just like the Hausdor↵ proof. We can embed each X
i

into the product and
use that a subspace of a regular space is regular.

(()

Lemma 30.2. Suppose that X is T
1

. Then X is regular if and only if for every point x and
neighborhood U of x, there is a neighborhood V of x with x 2 V ✓ V ✓ U .

We write X =
Y

i

X
i

for simplicity. Assume each X
i

is regular and nonempty. Note that each

X
i

is therefore Hausdor↵, and so we know that X is Hausdor↵ and thus T
1

. Now let x 2 X and
let U be an open neighborhood of x. We may as well assume that U is a basic open set. Thus

U =
Y

i

U
i

, where U
i

= X
i

for all but finitely many i. For each i, we have x
i

2 U
i

. Since X
i

is

regular, we can find a neighborhood V
i

of x
i

with x
i

2 V
i

✓ V
i

⇢ U
i

. In the case U
i

= X
i

, we take
V
i

= X
i

too.
Now (x

i

) 2
Q

i

V
i

✓

Q

i

V
i

=
Q

i

V
i

✓

Q

i

U
i

= U . This shows that X is regular. ⌅
It is simple to show that a subspace of a regular space is again regular, but the obvious argument

there does not translate to subspaces of normal spaces. It is easy to show that a closed subspace of
a normal space is again normal. We will see an example that shows arbitrary subspaces of normal
may not be normal.

Example 30.3. The lower limit topology R
``

is normal, but R
``

⇥ R
``

is not normal. This gives
an example of a regular space that is not normal and also shows that products of normal spaces
need not be normal. (See Munkres, example 31.3)

Another important class of normal spaces is the collection of metric spaces.
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Proposition 30.4. If X is metric, then it is normal.

Proof. Let X be metric and let A,B ✓ X be closed and dijsoint. For every a 2 A, let ✏
a

> 0 be a
number such that B

✏

a

(a) does not meet B (using that B is closed). Let

U
A

=
[

a2A
B

✏

a

/2

(a).

Similarly, we let

U
B

=
[

b2B
B

✏

b

/2

(b).

It only remains to show that U
A

and U
B

must be disjoint. Let x 2 B
✏

a

/2

(a) ✓ U
A

and pick any
b 2 B. We have

d(a, x) <
1

2
✏
a

<
1

2
d(a, b)

and thus

d(x, b) � d(a, b)� d(a, x) > d(a, b)�
1

2
d(a, b) =

1

2
d(a, b) >

1

2
✏
b

.

It follows that U
A

\ U
B

= ;. ⌅

Ok, so we’ve seen a few examples. So what, why should we care about normal spaces? Look
back at the definition for T

2

, T
3

, T
4

. In each case, we need to find certain open sets U and V . How
would one do this in general? In a metric space, we would build these up by taking unions of balls.
In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling
back open sets under a continuous map.

Theorem 30.5 (Urysohn’s Lemma). Let X be normal and let A and B be disjoint closed subsets.
Then there exists a continuous function f : X �! [0, 1] such that A ✓ f�1(0) and B ✓ f�1(B).

Sketch of proof. Define U
1

= X \ B. Since X is normal, we can find an open U
0

with A ✓ U
0

✓

U
0

✓ U
1

. By induction on the rational numbers r 2 Q \ (0, 1), we can find for each r an open set
U
r

with U
r

⇢ U
s

if r < s. We also define U
r

= X for r > 1. Then define

f(x) = inf{r 2 Q \ [0, 1] | x 2 U
r

}.

It follows that A ✓ f�1(0) and B ✓ f�1(B) as desired. It remains to show that f is continuous.
It su�ces to show that the preimage under f of the subbasis elements (�1, a) and (a,1) are

open. We have

f�1(�1, a) =
[

r2Q
r<a

U
r

, and f�1(a,1) = X \

\

r2Q
r>a

U
r

For more details, see either [Lee, Thm 4.82] or [Munkres, Thm 33.1]. ⌅

Note that Urysohn’s Lemma becomes an if and only if statement if we either drop the T
1

-condition
from normal or if we explicitly include singletons as possible replacements for A and B.

31. Fri, Nov. 8

Last time, we saw that a space is normal if and only if any two closed sets can be separated by
a continuous function (modulo the T

1

condition). Here is another important application of normal
spaces.

Theorem 31.1 (Tietze extension theorem). Suppose X is normal and A ✓ X is closed. Then any
continuous function f : A �! [0, 1] can be extended to a continuous function f̃ : X �! [0, 1].
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Again, this becomes an if and only if if we drop the T
1

-condition from normal.
It is also easy to see that the result fails if we drop the hypothesis that A be closed. Consider X =

S1 and A is the complement of a point. Then we know that A ⇠= (0, 1), but this homeomorphism
cannot extend to a map S1 ⇣ (0, 1).

Sketch of proof. It is more convenient for the purpose of the proof to work with the interval [�1, 1]
rather than [0, 1]. Thus suppose f : A �! [�1, 1] is continuous. Then A

1

= f�1([�1,�1/3]) and
A

2

= f�1([1/3, 1]) are closed, disjoint subsets of A and therefore also of X. Since X is normal, we
have a Urysohn function g

1

: X �! [�1/3, 1/3] which separates A
1

and A
2

. It is simple to check
that |f(a)� g

1

(a)| < 2/3 for all a 2 A. In other words, we have a map

f 0 = f � g
1

: A �! [�2/3, 2/3].

Define A0
1

= f 0�1([�2/3,�2/9]) and A0
2

= f 0�1([2/9, 2/3]). We get a Urysohn function g
2

: X �!

[�1/9, 1/9] which separates A0
1

and A0
2

. Then the di↵erence f 00 = f � g
1

� g
2

maps to [�2/9, 2/9].
We continue in this way, and in the end, we get a sequence of functions (g

n

) defined on X, and we
define g =

P

n

g
n

. By construction, this agrees with f on A (the di↵erence will be less than 2/3n for
all n). The work remains in showing that the series defining g converges (compare to a geometric
series) and that the resulting g is continuous. See [Munkres, Thm 35.1] for more details. ⌅

You might wonder if there is a version of Urysohn’s lemma for regular spaces: that is, is it true
that if a space is regular and A is a closed subset not containing a point x, then some continuous
function separates x from A? It turns out that the answer is not quite. If you try to modify the
proof of Urysohn’s lemma for the regular case, you quickly get stuck. You get the open set U

0

, but
at the next stage, there is no reason that the U

r

’s must exist.

Definition 31.2. We say that X is completely regular (or T
3

1
2
) if it is T

1

and given a closed

set A and a point x not in A, there exists a continuous f such that f(x) = 0 and f(a) = 1 for all
a 2 A.

We have T
4

=) T
3

1
2

=) T
3

, but neither implication is an if and only if.

Theorem 31.3 (Stone-Čech compactification). Suppose X
is completely regular. There exists a “universal” compactifi-
cation ◆ : X �! Y of X, such that if j : X �! Z is any
map to a compact Hausdorf space (for example a compacti-
fication), there is a unique quotient map q : Y �! Z with
q � ◆ = j.

Y
q

��
X
/
✏

◆

>>

j

// Z

Proof. Given the space X, let F = { cts f : X �! [0, 1]}. Define

◆ : X �! [0, 1]F

by ◆(x)
f

= f(x). This is continuous because each coordinate function is given by some f 2 F . The

infinite cube is compact Hausdor↵, and we let Y = ◆(X). It remains to show that ◆ is an embedding
and also to demonstrate the universal property.

First, ◆ is injective since X is completely regular: given distinct points x and y in X, there is a
Urysohn function separating x and y, so ◆(x) 6= ◆(y).

Now suppose that U ✓ X is open. We wish to show that ◆(U) is open in ◆(X). Pick x
0

2 U .
Since X is completely regular, we have a function g : X �! [0, 1] with g(x

0

) = 0 and g ⌘ 1 outside
of U . Let

B = {◆(x) 2 ◆(X) | g(x) 6= 1}.
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Certainly ◆(x
0

) 2 B. Also, this is open since it can be rewritten as p�1

g

([0, 1)). Finally, B ⇢ ◆
U

)
since if ◆(x) 2 B, then g(x) 6= 1. But g ⌘ 1 outside of U , so x must be in U .

For the universal property, suppose that j : X �! Z is a map to a compact Hausdor↵ space.
Then Z is also completely regular, and the argument above shows that it embeds inside some large
cube [0, 1]K . For each k 2 K, we thus get a coordinate map i

k

: X �! [0, 1], and it is clear how
to extend this to get a map q

k

: Y �! [0, 1]: just take q
k

to be the projection map p
i

k

onto the
factor labelled by the map i

k

. Piecing these together gives a map q : Y �! [0, 1]K , but it restricts
to the map i on the subset X. Since i has image in the closed subset Z, it follows that q(Y ) ✓ Z
since q is continuous and ◆(X) is dense in Y . Note that q is the unique extension of j to Y since Z
is Hausdor↵ and ◆(X) is dense in Y . ⌅
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