32. MonN, Nov. 11

Last time, we introduced the idea of a completely regular space, and we saw that this allowed
us to build a universal compactification (the Stone-Cech compactification).

Corollary 32.1. X is completely reqular if and only if it is homeomorphic to a subspace of [0,1]7
for some set J.

This has consequences for metrizability of a space. Consider first the case that the index set J
is countable.

Proposition 32.2. Let Y be a metric space, and let d : Y x Y — R be the associated truncated
metric. Then the formula

Dt = {2

defines a metric on Y, and the induced topology is the product topology.

Proof. We leave as an exercise the verification that this is a metric. We check the statement about
the topology. For each n, let p, : YN — Y be evaluation in the nth place. This is continuous, as
given y € YN and € > 0, we let § = ¢/n. Then if D(y,z) < 4, it follows that

d
d(Yn, 2n) = ni(yn’ 2n) <nD(y,z) <nd =e.
n
By the universal property of the product, we get a continuous bijection p : YN — H Y.
N
It remains to show that p is open. Thus let B C YN be an open ball, and let y € p(B) = B.
We want to find a basis element U in the product topology with y € U C B. For convenience, we
replace B by B¢(y) for small enough e. Take N large such that 1/N < e. Then define

N
U= (\p; ' (Bew:).
=1

Let z € YN, Recall that we have truncated our metric on Y at 1. Thus if n > N, we have that

d(yn,zn)/n < 1/n < 1/N < e. It follows that for any z € U, we have z € B.(x) as desired. [

On the other hand, if .J is uncountable, then [0, 1]/ need not be metric, as the following example
shows.

Example 32.3. The sequence lemma fails in RR. Let A C R® be the subset consisting of functions
that zero at all but finitely many points. Let g be the constant function at 1. Then g € A, since if

U= m px_il (Cbi, bz)
L1y Tk
is a neighborhood of g, then the function

f(x)—{ 1 ze{x,...,zx}

0 else

is in UNA. But no sequence in A can converge to g (recall that convergence in the product topology
means pointwise convergence). For suppose f, is a sequence in A. For each n, let Z, = supp(f,)
(the support is the set where f,, is nonzero). Then the set

Z:U%
n

is countable, and on the complement of Z, all f,’s are zero. So it follows that the same must be
true for any limit of f,,. Thus the f, cannot converge to g.
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This finally leads to a characterization of those topological spaces which come from metric spaces.
Theorem 32.4 (Munkres, Theorem 32.1). If X is second countable and regular, then it is normal.
Theorem 32.5. If X is reqular and second countable, then it is metrizable.

Proof. Since X is completely regular, we can embed X as above inside a cube [0, 1]/ for some J.
Above, we took J to be the collection of all functions X — [0, 1].

To get a countable indexing set J, start with a countable basis B = {B,,} for X. For each pair
of indices n,m for which B,, C B, the Urysohn lemma gives us a function g, ,, vanishing on B,
and equal to 1 outside B,,. We take J = {gnm}. Going back to the proof of the Stone-Cech-
compactification, we needed, for any x¢y € X and xg € U, to be able to find a function vanishing at
xo but equal to 1 outside of U.

Take a basis element B, satisfying x¢ € B, C U. Since X is regular, we can find an open set V'
with 2o € V. C V C By,. Find a B, inside of V, and we are now done: namely, the function g, m,
is what we were after. |

33. WED, Nov. 13

MIDTERM! PART DEUX.

34. FrI, Nov. 15

Recall that a space is paracompact if every open cover has a locally finite open refinement that
is a cover. We saw that any second countable Hausdorff space is paracompact.

Theorem 34.1 (Munkres, Theorem 41.4). If X is metric, then it is paracompact.

As we will see, paracompactness will allow us to build functions. As a first step, we show that
this implies normality. First, we need a lemma.

Lemma 34.2. If {A} is a locally finite collection of subsets of X, then

Ja={J4
Proof. We have already shown before that the inclusion D holds generally. The other implication
follows from the neighborhood criterion for the closure. Let = € | J A. Then we can find a neighbor-
hood U of x meeting only Ay, ..., A,. Then z € J;_; A; since else there would be a neighborhood V

of x meeting the A;’s. Then U NV would be a neighborhood missing |J 4. But J_; 4; = UL, 4;,
so we are done. |

Theorem 34.3 (Lee, Theorem 4.81). If X is paracompact and Hausdorff, then it is normal.

Proof. We first use the Hausdorff assumption to show that X is regular. A similar argument can
then be made, using regularity, to show normality.

Thus let A be closed and b ¢ A. We wish to find disjoint open sets A C U and b € V. For every
a € A, we can find disjoint open neighborhoods U, of a and V, of b. Then {U,} U{X \ A} is an
open cover, so there is a locally finite subcover V. Take W C V to be the W € V such that W C U,
for some a. Then W is still locally finite.

We take U = Upyeyy W and V = X \ U. We know b € V since U = |JW, and b ¢ W since
W C U, and b has a neighborhood (V) disjoint from U,,. [ |

Recall that the support of a conitnuous function f: X — R is supp(f) = f~1(R\ {0}).

Definition 34.4. Let U = {U,} be a cover of X. A partition of unity subordinate to U is a
collection ¢, : X — [0, 1] of continuous functions such that
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(1) supp(pa) € Ua

(2) the collection supp(¢q) is locally finite

(3) we have )" o = 1. Note that, when evaluated at some x € X, this sum is always finite
by the local finite assumption (2).

Theorem 34.5. Let X be paracompact Hausdorff, and let U = {Uy} be an open cover. Then there
exists a partition of unity subordinate to U.

Lemma 34.6 (Lee, 4.84). There exists a locally finite refinement {Va} of {Us} with V,, C U,.

Proof of Theorem. We apply the lemma twice to get locally finite covers {V,} and {W,} with
Wy €V, CV, CU,. For each a, we use Urysohn’s lemma to get f, : X — [0,1] with f, =1
on W, and supp(fa) C Vo C U,. Since {V,} is locally finite, we can define f : X — [0,1] by
f =23, fa. Locally around some = € X, the function f is a finite sum of f,’s, and so is continuous.
It only remains to normalize our f,’s. Note that at any x € X, we can find an « for which z € W,
and so f(z) > fo(z) = 1. Thus it makes sense to define ¢, : X — [0, 1] by

fa(2)
Yal(T) = )
=)
We have supp(¢a) = supp(fa), and so the ¢, give a partition of unity. |

Partitions of unity come up often in the theory of vector bundles. For us, they have an powerful
consequence for a very important class of spaces.
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