
38. Mon, Nov. 25

Last week, we showed that the compact-open topology on a mapping space Map(A, Y ) has the
nice property that we in fact get a homeomorphism

Map(X ⇥A, Y ) ⇠= Map(X,Map(A, Y ))

under mild hypotheses on A and X. Before getting to the compact-open topology, we saw why the
product topology would not do (too coarse). There was the suggestion to also try the box topology,
but here is an example to show why that also would not have worked.

Consider the case X = Y = R and A = N, all with their usual topologies. Let f : R⇥ N �! R
be the projection. Then this corresponds to the function R �! RN which sends any number to
the constant sequence at that number. Another name for this function is the diagonal, and we saw
when we introduced the box topology that it is not continuous.

Looking back to the initial discussion of metric spaces, there we introduced the uniform topology
on a mapping space.

Theorem 38.1 (Munkres, 46.7 or Willard, 43.6). Let Y be a metric space. Then on the set C(A, Y )
of continuous functions A �! Y , the compact-open topology is intermediate between the uniform
topology and the product topology. Furthermore, the compact-open topology agrees with the uniform
topology if A is compact.

The main point is to show (Munkres, Theorem 46.8) that the compact-open topology can be
described by basis elements
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In the setting of metric spaces, the compact-open topology is known as the topology of compact
convergence, as convergence of functions corresponds to (uniform) convergence on compact subsets.

For fun, here is one of the first results towards the theory of C⇤-algebras (pronounced C-star).

Theorem 38.2. Let X be compact Hausdor↵ and denote by C(X) the space Map(X,R) of real-
valued functions on X. Then the map

⇤ : X �!

\C(X) = {� : C(X) �! R | � is a continuous R-algebra map}

defined by

⇤(x) = ev
x

is a homeomorphism if \C(X) ✓
Y

C(X)

R is equipped with the product topology.

In this case, the product topology coincides with a topology of interest in analysis known as the
weak-⇤ topology.
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Proof. Since we have given \C(X) the product topology, it is simple to verify that ⇤ is continuous.

Note that since X is compact and \C(X) is Hausdor↵, it remains only to show that ⇤ is a bijection.
Suppose that ⇤(x) = ⇤(x0). Since X is compact Hausdor↵, for any two distinct points there is

a continuous function taking di↵erent values at those points. The fact that ⇤(x) = ⇤(x0) says that
no such function exists for x and x0, so we must have x = x0.

Now let � 2

\C(X). We wish to show that � = ev
x

for some x.
The main step is to show that there exists x 2 X such that if �(f) = 0 for some f , then f(x) = 0.

Suppose not. Then for every x 2 X, there exists a function f
x
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and note that g(x) > 0 for all x. This is because f
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cover X. Since g is
nonzero, it follows that 1/g is also continuous on X. But now

1 = �(g · 1/g) = �(g) · �(1/g),

which implies that �(g) 6= 0. But � is an algebra homomorphism, so

�(g) =
X

i

�(f
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which is a contradiction.
This now establishes that there must be an x 2 X such that if �(f) = 0 then f(x) = 0. But now

the theorem follows, for if f 2 C(X), then

�(f � �(f) · 1) = �(f)� �(f) · �(1) = 0.

By the above, we then have that f(x)��(f) = 0, so that �(f) = f(x). In other words, � = ev
x

. ⌅

39. Mon, Dec. 2

Recently, we consider topological manifolds, which are a nice collection of spaces. Next semester,
we will often work with another nice collection of spaces that can be built inductively. These are
cell complexes, or CW complexes.

A typical example is a sphere. In dimension 1, we have S1, which we can represent as the quotient
of I = [0, 1] by endpoint identification. Another way to say this is that we start with a point, and
we “attach” an interval to that point by gluing both ends to the given point.

For S2, there are several possibilities. One is to start with a point and glue a disk to the point
(glueing the boundary to the point). An alternative is to start with a point, then attach an interval
to get a circle. To this circle, we can attach a disk, but this just gives us a disk again, which we
think of as a hemisphere. If we then attach a second disk (the other hemisphere), we get S2.

But what do we really mean by “attach a disk”?
Let’s start today by discussing the general “pushout” construction, which showed up last time

in our construction of graphs.

Definition 39.1. Suppose that f : A �! X and g : A �! Y are continuous maps. The pushout
(or glueing construction) of X and Y along A is defined as

X [

A

Y := X q Y/ ⇠, f(a) ⇠ g(a).
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We have an inclusion X ,! X q Y . Composing this with the quotient map
to X [

A

Y gives the map ◆
X

: X �! X [

A

Y . We similarly have a map
◆
Y

: Y �! X [

A

Y . Moreover, these maps make the diagram to the right
commute. The point is that

◆
X

(f(a)) = f(a) = g(a) = ◆
Y

(g(a)).

A
g //

f

✏✏

Y

◆

Y

✏✏
X

◆

X // X [

A

Y

For any n, we have the standard inclusion Sn�1 ,! Dn as the boundary.

Definition 39.2. Given a space X and a continuous map ↵ : Sn�1

�! X, we write X [

↵

Dn for
the pushout

Sn�1 //

↵

✏✏

Dn

✏✏
X

◆

X // X [

↵

Dn

The image ◆(Int(Dn)) is referred to as an n-cell and is sometimes denoted en. Thus the above
space, which is described as obtained by attaching an n-cell to X, is also written X [

↵

en.

In general, this attaching process does not disturb the interiors of the cells, as follows from

Proposition 39.3. If g : A ,! Y is injective, then
◆
X

: X �! X [

A

Y is also injective.

Proof. Suppose that ◆
X

(x) = ◆
X

(x0). The relation imposed
on X q Y only a↵ects points in f(A) and g(A). We assume
that x, x0 2 f(A) since otherwise we must have x = x0. In
general, the situation we should expect is represented in the
picture to the right. But since g is injective, this means that
a
1

= a
2

and a
3

= a
4

. This implies that x = f(a
1

) = f(a
2

) =
x
1

and that x
1

= f(a
3

) = f(a
4

) = x0. Putting these together
gives x = x0. ⌅
Example 39.4. If A = ;, then X [

A

Y = X q Y .

Example 39.5. If A = ⇤, then X [

A

Y = X _ Y .

The main point of this construction is the following property.

Proposition 39.6 (Universal property of the pushout).
Suppose that '

1

: X �! Z and '
2

: Y �! Z are maps
such that '

1

� f = '
2

� g. Then there is a unique map
� : X [

A

Y �! Z which makes the diagram to the right
commute.

A
g //

f

✏✏

Y

◆

Y

✏✏ '2



X
◆

X //

'1 ..

X [

A

Y
�

##
Z

This generalizes the “pasting” lemma. Suppose that U, V ✓ X are open subsets. Then it is not
di�cult to show that the pushout U [

U\V V is homeomorphic to X. The universal property for
the pushout then says that specifying a continuous map out of X is the same as specifying a pair
of continuous maps out of U and V which agree on their intersection U \ V . This is precisely the
statement of the pasting lemma!

By the way, Proposition 39.3 is not only true for injections.

Proposition 39.7. (i) If f : A �! X is surjective, then so is ◆
Y

: Y �! X [

A

Y .
(ii) If f : A �! X is a homeomorphism, then so is ◆

Y

: Y �! X [

A

Y .
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Proof. We prove only (ii). We show that if f is a homeo-
morphism, then Y satisfies the same universal property as
the pushout. Consider the test diagram to the right. We
have no choice but to set � = '

2

. Does this make the di-
agram commute? We need to check that � � g � f�1 = '

1

.
Well,

� � g � f�1 = '
2

� g � f�1 = '
1

� f � f�1 = '
1

.

⌅

A
g //

f

✏✏

Y

'2

✏✏

X
f

�1
//

'1 ..

A
g // Y

�

��
Z

40. Wed, Dec. 4

We use the idea of attaching cells (using a pushout) to inductively build up the idea of a cell
complex or CW complex.

Definition 40.1. A CW complex is a space built in the following way

(1) Start with a discrete set X0 (called the set of 0-cells, or the 0-skeleton)
(2) Given the (n � 1)-skeleton Xn�1, the n-skeleton Xn is obtained by attaching n-cells to

Xn�1.
(3) The space X is the union of the Xn, topologized using the “weak topology”. This means

that U ✓ X is open if and only if U \Xn is open for all n.

A cell complex is defined similarly, except that we do not restrict the dimension of the cells
attached at each stage.

The third condition is not needed if X = Xn for some n (so that X has no cells in higher
dimensions). On the other hand, the ’W’ in the name CW complex refers to item 3 (”weak
topology”). The ’C’ in CW complex refers to the Closure finite property: the closure of any cell is
contained in a finite union of cells. We will come back to this point later.

Example 40.2. (1) Sn. We have already discussed two CW structures on S2. The first has
X0 a singleton and a single n-cell attached. The other had a single 0-cell and single 1-cell
but two 2-cells attached. There is a third option, which is to start with two 0-cells, attach
two 1-cells to get a circle, and then attach two 2-cells to get S2.

The first and third CW structures generalize to any Sn. There is a minimal CW structure
having a single 0-cell and single n-cell, and there is another CW structure have two cells in
every dimension up to n.

(2) RPn. Let’s start with RP2. Recall that one model for this space was as the quotient of D2,
where we imposed the relation x ⇠ �x on the boundary. If we restrict our attention to the
boundary S1, then the resulting quotient is RP1, which is again a circle. The quotient map
q : S1

�! S1 is the map that winds twice around the circle. In complex coordinates, this
would be z 7! z2. The above says that we can represent RP2 as the pushout

S1

◆ //

q

✏✏✏✏

D2

✏✏✏✏

S1 // RP2

If we build the 1-skeleton S1 using a single 0-cell and a single 1-cell, then RP2 has a single
cell in dimensions  2.

More generally, we can define RPn as a quotient of Dn by the relation x ⇠ �x on the
boundary Sn�1. This quotient space of the boundary was our original definition of RPn�1.

62



It follows that we can describe RPn as the pushout

Sn�1

◆ //

q

✏✏✏✏

Dn

✏✏✏✏
RPn�1 // RPn

Thus RPn can be built as a CW complex with a single cell in each dimension  n.

41. Fri, Dec. 6

(3) CPn. Recall that CP1

⇠= S2. We can think of this as having a single 0-cell and a single
2-cell. We defined CP2 as the quotient of S3 by an action of S1 (thought of as U(1)). Let
⌘ : S3

�! CP1 be the quotient map. What space do we get by attaching a 4-cell to CP1

by the map ⌘? Well, the map ⌘ is a quotient, so the pushout CP1

[

⌘

D4 is a quotient of D4

by the S1-action on the boundary.
Now include D4 into S5

✓ C3 via the map

'(x
1

, x
2

, x
3

, x
4

) = (x
1

, x
2

, x
3

, x
4

,
q

1�
X

x2
i

, 0).

(This would be a hemi-equator.) We have the diagonal U(1) action on S5. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ' meets
every S1-orbit in S5, and this inclusion induces a homeomorphism on orbit spaces

D4/U(1) ⇠= S5/U(1) = CP2.

We have shown that CP2 has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CPn can be built as a CW complex

having a cell in each even dimension.
(4) (Torus) In general, a product of two CW complexes becomes a CW complex. We will

describe this in the case S1

⇥ S1, where S1 is built using a single 0-cell and single 1-cell.
Start with a single 0-cell, and attach two 1-cells. This gives S1

_S1. Now attach a single
2-cell to the 1-skeleton via the attaching map  defined as follows. Let us refer to the two
circles in S1

_ S1 as ` and r. We then specify  : S1

�! S1

_ S1 by `r`�1r�1. What
we mean is to trace out ` on the first quarter of the domain, to trace out r on the second
quarter, to run ` in reverse on the third quarter, and finally to run r in reverse on the final
quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map
 : S1

�! S1

_ S1 is surjective, so is ◆
D

2 : D2

�! X. Even better, it is a quotient map.
On the other hand, we also have a quotient map I2 �! T 2, and using the homeomorphism
I2 ⇠= D2 from before, we can see that the quotient relation in the two cases agrees. We
say that this homeomorphism T 2

⇠= X puts a cell structure on the torus. There is a single
0-cell (a vertex), two 1-cells (the two circles in S1

_ S1), and a single 2-cell.

Let’s talk about some of the (nice!) topological properties of CW complexes.

Lemma 41.1. Let I = {eni

i

} be the set of all cells in X. Then X is a quotient of
a

i

Dn

i. In

particular, A ✓ X is open (or closed) if and only if, for each cell i and corresponding characteristic
map �

i

: Dn

i

�! X, the preimage ��1

i

(A) is open (or closed) in Dn

i.

By the way, for 0-cells, we have that e0 = D0 is a point. In this case, D0 = R0, so it is its own
interior.
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Proof. The forward implication is clear by continuity of the '
i

. For the other direction, suppose
that each ��1

i

(A) is open. Then A \ X0 is open in X0, since X0 is just the disjoint union of its
cells. Now assume by induction that A \Xn�1 is open in Xn�1. But, by the construction of the
pushout, the n-skeleton Xn is a quotient of Xn�1

q

`

Dn. Since A \ Xn pulls back to an open
set in each piece of this coproduct, it must be open in A \ Xn by the definition of the quotient
topology. Now, since A \Xn is open in Xn for all n, A is open in X by property W. ⌅
Theorem 41.2. Any CW complex X is normal.

Proof. First, X is T
1

by the Lemma since any point obviously pulls back to a closed subset of
every Dn

i

. Let A and B be disjoint closed sets in X. We will show that X is normal by building a
Urysohn function f : X �! [0, 1] with f(A) ⌘ 0 and f(B) ⌘ 1. Because X satisfies property W,
a function f defined on X is continuous if and only if its restriction to each Xn is continuous. We
thus build the function f by building its restrictions fn to Xn.

On X0, we define

f0(x) =

8

<

:

0 x 2 A \X0

1 x 2 B \X0

1/2 else.

Since X0 is discrete, this is automatically continuous.
Next time, we will give the induction step of building fn from fn�1.
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