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Now assume by induction that we have f*~! : X"~! — [0, 1] continuous with f*~1(ANX""1)
0 and f*~ (BN X" 1) =1. Since we have a pushout diagram

H Snfl H Dn

L

Xn—l Xn’

by the universal property of the pushout, to define f* on X", we need only specify a compatible
pair of functions on X"~ ! and on the disjoint union. On X"~ !, we take f"~!. To define a map out
of H D" it is enough to define a map on each D™.
For each n-cell ¢!, define W; C D™ closed by W; = D" U ®; 1(AN X™)U®; (BN X"). Define
g:W; —[0,1] by
fr () €D
g(z)=4¢ 0 ze®; H(ANX")
1 € ®; H(BNX").
We know that D™ is compact Hausdorff (or metric) and thus normal. Thus, by the Tietze extneion
theorem (31.1) there is a Urysohn function for the disjoint closed sets ®; ' (ANX") and ®; ' (BNX™)

whose restriction to D™ agrees with f?~1o;. Putting all of this together gives a Urysohn function
on X" for the AN X™ and BN X". By induction, we are done. |

Proposition 42.1. Any CW complex X is locally path-connected.

Proof. Let © € X and let U be any open neighborhood of z. We want to find a path-connected
neighborhood V of x in U. Recall that a subset V' C X is open if and only if V N X™ is open for all
n. We will define V' by specifying open subsets V™ C X™ with V"' N X" = V" and then setting
V=uvm

Suppose that z is contained in the cell e}'. We set Vk =0 for k <n. We specify V,, by defining
<I>J71(V”) for each n-cell €. If j # i, we set @;1(‘/”) = (. We define ®; '(V;,) to be an open
n-disc around ®; '(x) whose closure is contained in ®;*(U). Now suppose we have defined V*
for some k > n. Again, we define V¥+1 by defining each ®; ' (V**1). By assumption, ®; '(V*) C
ODF1 C <I>Z._1(U ). By the Tube lemma, there is an € > 0 such that (using radial coordinates)
O (VF) x (1 —¢,1] € U. We define

o V) = &7 (VF) x [1,1 — ¢/2),

which is path-connected by induction. This also guarantees that VA+1 ¢ U N X**+1 allowing the
induction to proceed. [

Proposition 42.2 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely many
cells.

Proof. For each cell e; meeting K, pick a point k; € K Ne;. Let S = {k;}. We use proprety W to
show that S is closed in X. It is clear that S N X is closed in X° since X° is discrete. Assume
that SN X" is closed in X" . Now in X", the set S N X" is the union of the closed subset
SN X"! and the points k; that lie in open n-cells. By Lemma 41.1, this set of k; is closed as well.

The argument above in fact shows that any subset of S is closed, so that .S is discrete. But S is
closed in K, so S is compact. Since S is both discrete and compact, it must be finite. [

Corollary 42.3. Any CW complex has the closure-finite property, meaning that the closure of any
cell meets finitely many cells.
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Proof. The closure of e; is ®;(D;""), which is compact. The result follows from the proposition. M

43. WED. DEc. 11

Proposition 43.1. A CW complex X is locally compact if and only if every point has a neighbohood
that meets finitely many cells.

Theorem 43.2 (Lee, 5.25). Every 1-manifold admits a (nice) CW decomposition.
Theorem 43.3 (Lee, 5.36, 5.37). Every n-manifold admits a (nice) CW decomposition for n = 2, 3.

According to p. 529 of Allen Hatcher’s Algebraic Topology book, it is an open question whether
or not every 4-manifold admits a CW decomposition. But n-manifolds for n > 5 do always admit
a CW decomposition.

Theorem 43.4. Every nonempty, connected 1-manifold M is homeomorphic to S' if it is compact
and to R if it is noncompact.

For this theorem, it will be convenient to work with nice CW structures.

Definition 43.5. If X is a space with a CW structure, we say that an n-cell e is regular if the
characteristic map ®; : D" — €; C X is a homeomorphism onto its image. We say that a CW
complex is regular if every cell is regular.

Proof. The first step is to show that every 1-manifold has a regular CW decomposition. The main
idea is to cover M by a countable collection {U,,} of regular charts (each closure U, in M should
be homeomorphic to [0,1]). Then, using induction, it is possible to a regular CW structure on
Up = Uj_, Uy in such a way that U, C Up41 is the inclusion of a subcomplex. (See Lee 5.25
for more details.) Clearly, each 1-cell bounds two 0-cells, since the 1-cell is assume to be regular.
Somewhat less clear is the fact that each O-cell is in the boundary of two 1-cells (see Lee 5.26).

We enumerate the 0-cells (aka vertices) and 1-cells (aka edges) in the following way. First, pick
some O-cell, and call it vy. Pick an edge ending at vy, and call this eg. The other endpoint of eg
we call v;. The other edge ending at v; is called e;. We can continue in this way to get va,vs, ...
and eg, e3,.... Now there is also another edge ending at vy, which should be called e_;. Let v_;
be the other endpoint. We can continue to get v_9,v_3,... and e_9,e_3,....

There are two cases to consider:

Case 1: The vertices v;, ¢ € Z are all distinct. Then for each n € Z, we have an embedding

[n,n + 1] = [-1,1] Ln, eh. These glue together to give a continuous map f : R — X. Our
assumption means that f is injective when restricted to Z. We can then see it is globally injective
since its restriction to any (n,n + 1) is a characteristic map for a cell (thus injective) and all cells
are disjoint. Since M is connected and thus path-connected (M is locally Euclidean) any path
from vy to any other point is contained in a finite union of the U;’s. It follows that f: R — M is
surjective.

Finally, we show that f is open. Any open subset of (n,n + 1) is taken by f to an open subset
of M, since the top-dimension cells are always open in a CW complex. It remains to show that
f takes intervals of the form (n — €,n + €) to open subsets of M. By taking € small enough, we
can ensure that this image is contained in (the closure of) two 1-cells. We can then see that this
subset of M is open by pulling back along the characteristic maps (pulling back along these two
characteristic maps will give half-open intervals in D).
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Case 2: For some n € Z and k > 0, we have v, = v,1,. We may then pick n and k so that
k is minimal. Then the vertices vy, ...,v,41—1 are distinct, as are the edges e, ..., ep1x—1. This
implies that the restriction of f to [n,n + k) is injective. If we consider the restriction only to the
closed interval [n,n + k], then we get a closed map, since the domain is compact and the target is
Hausdorff. We claim also that f([n,n+k]) is open in M. Indeed, if we pick any x € [n, n+ k| which
lies in an interval (7,7 + 1), then the open 1-cell e; is a neighborhood of f(x) that is contained in
the image of f. If we consider any interior integer n < ¢ < n + k, then e;_1 U {v;} Ue; is an open
neighborhood in the image of f. Finally, e, U {n}e,4x—1 is a neighborhood of f(n) = f(n + k) in
M.

Since the image f([n,n + k]) is both closed and open in M and M is connected, we conclude
that f([n,n+ k]) = M. Since f(n) = f(n+ k), we get an induced map

filnn+kl/~=5"— M
which is a bijection. Since S! is compact and M is Hausdorff, this is a homeomorphism. |

We previously also briefly mentioned the idea of a “manifold with boundary”. There is a similar
result:

Theorem 44.1. Every nonempty, connected 1-manifold with boundary is homeomorphic to [0, 1]
if it is compact and to [0,1) if it is noncompact.

Next semester, we will similarly classify all compact 2-manifolds (the list of answers will be a
little longer).

A closely related idea to CW complex is the notion of simplicial complex. A simplicial complex
is built out of “simplices”. By definition, an n-simplex is the convex hull of n + 1 “affinely
independent” points in R¥, for k¥ > n 4+ 1. This means that after translating this set so that one
point moves to the origin, the resulting collection of points is linearly independent.

There is a standard n-simplex A" C R"*! defined by

A" = {(tg,...,t,) € R Zti =1,¢ > 0}.

In general, if o is an n-simplex generated by {to,...t,}, then the convex hull of any subset is
called a face of the simplex. A (Euclidean) simplicial complex is then a subset of R that is a
union of simplices such that any two overlapping simplices meet in a face of each. We also usually
require the collection of simplices to be locally finite.

Since an n-simplex is homeomorphic to D™, it can be seen that a simplicial complex is a regular
CW complex. A decomposition of a manifold as a simplicial complex is known as a triangulation
of the manifold. Just as one can ask about CW structures on manifolds, one can also ask about
triangulations for manifolds.

Theorem 44.2. (1) BEwvery l-manifold is triangulable (indeed, we know the complete list of

connected 1-manifolds).

(2) Tibor Radd proved in 1925 that every 2-manifold is triangulable.

(3) Edwin Moise proved in the 1950s that every 3-manifold is triangulable.

(4) Michael Freedman discovered the 4-dimensional Eg-manifold in 1982, which is not triangu-
lable.

(5) Ciprian Manolescu showed in March 2013 that manifolds in dimension > 5 are not trian-
gulable.
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