
42. Mon, Dec. 9

Now assume by induction that we have fn�1 : Xn�1

�! [0, 1] continuous with fn�1(A\Xn�1) ⌘
0 and fn�1(B \Xn�1) ⌘ 1. Since we have a pushout diagram

`

Sn�1

✏✏

//
`

Dn

✏✏
Xn�1 // Xn,

by the universal property of the pushout, to define fn on Xn, we need only specify a compatible
pair of functions on Xn�1 and on the disjoint union. On Xn�1, we take fn�1. To define a map out

of
a

Dn, it is enough to define a map on each Dn.

For each n-cell ei, define W
i

✓ Dn closed by W
i

= @Dn

[ ��1

i

(A \Xn) [ ��1

i

(B \Xn). Define
g : W

i

�! [0, 1] by

g(x) =

8

<

:

fn�1('(x)) x 2 @Dn

0 x 2 ��1

i

(A \Xn)
1 x 2 ��1

i

(B \Xn).

We know that Dn is compact Hausdor↵ (or metric) and thus normal. Thus, by the Tietze extneion
theorem (31.1) there is a Urysohn function for the disjoint closed sets ��1

i

(A\Xn) and ��1

i

(B\Xn)
whose restriction to @Dn agrees with fn�1

�'
i

. Putting all of this together gives a Urysohn function
on Xn for the A \Xn and B \Xn. By induction, we are done. ⌅
Proposition 42.1. Any CW complex X is locally path-connected.

Proof. Let x 2 X and let U be any open neighborhood of x. We want to find a path-connected
neighborhood V of x in U . Recall that a subset V ✓ X is open if and only if V \Xn is open for all
n. We will define V by specifying open subsets V n

✓ Xn with V n+1

\Xn = V n and then setting
V = [V n.

Suppose that x is contained in the cell en
i

. We set V k = ; for k < n. We specify V
n

by defining
��1

j

(V n) for each n-cell en
j

. If j 6= i, we set ��1

j

(V
n

) = ;. We define ��1

i

(V
n

) to be an open

n-disc around ��1

i

(x) whose closure is contained in ��1

i

(U). Now suppose we have defined V k

for some k � n. Again, we define V k+1 by defining each ��1

i

(V k+1). By assumption, ��1

i

(V k) ✓
@Dk+1

✓ ��1

i

(U). By the Tube lemma, there is an ✏ > 0 such that (using radial coordinates)
��1

i

(V k)⇥ (1� ✏, 1] ⇢ U . We define

��1

i

(V k+1) = ��1

i

(V k)⇥ [1, 1� ✏/2),

which is path-connected by induction. This also guarantees that V k+1

⇢ U \Xk+1, allowing the
induction to proceed. ⌅
Proposition 42.2 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely many
cells.

Proof. For each cell e
i

meeting K, pick a point k
i

2 K \ e
i

. Let S = {k
i

}. We use proprety W to
show that S is closed in X. It is clear that S \ X0 is closed in X0 since X0 is discrete. Assume
that S \ Xn�1 is closed in Xn�1. Now in Xn, the set S \ Xn is the union of the closed subset
S \Xn�1 and the points k

i

that lie in open n-cells. By Lemma 41.1, this set of k
i

is closed as well.
The argument above in fact shows that any subset of S is closed, so that S is discrete. But S is

closed in K, so S is compact. Since S is both discrete and compact, it must be finite. ⌅
Corollary 42.3. Any CW complex has the closure-finite property, meaning that the closure of any
cell meets finitely many cells.
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Proof. The closure of e
i

is �
i

(Dn

i

i

), which is compact. The result follows from the proposition. ⌅

43. Wed. Dec. 11

Proposition 43.1. A CW complex X is locally compact if and only if every point has a neighbohood
that meets finitely many cells.

Theorem 43.2 (Lee, 5.25). Every 1-manifold admits a (nice) CW decomposition.

Theorem 43.3 (Lee, 5.36, 5.37). Every n-manifold admits a (nice) CW decomposition for n = 2, 3.

According to p. 529 of Allen Hatcher’s Algebraic Topology book, it is an open question whether
or not every 4-manifold admits a CW decomposition. But n-manifolds for n � 5 do always admit
a CW decomposition.

Theorem 43.4. Every nonempty, connected 1-manifold M is homeomorphic to S1 if it is compact
and to R if it is noncompact.

For this theorem, it will be convenient to work with nice CW structures.

Definition 43.5. If X is a space with a CW structure, we say that an n-cell en
i

is regular if the
characteristic map �

i

: Dn

�! e
i

⇢ X is a homeomorphism onto its image. We say that a CW
complex is regular if every cell is regular.

Proof. The first step is to show that every 1-manifold has a regular CW decomposition. The main
idea is to cover M by a countable collection {U

n

} of regular charts (each closure U
n

in M should
be homeomorphic to [0, 1]). Then, using induction, it is possible to a regular CW structure on
U

n

=
S

n

k=1

U
k

in such a way that U

n

✓ U

n+1

is the inclusion of a subcomplex. (See Lee 5.25
for more details.) Clearly, each 1-cell bounds two 0-cells, since the 1-cell is assume to be regular.
Somewhat less clear is the fact that each 0-cell is in the boundary of two 1-cells (see Lee 5.26).

We enumerate the 0-cells (aka vertices) and 1-cells (aka edges) in the following way. First, pick
some 0-cell, and call it v

0

. Pick an edge ending at v
0

, and call this e
0

. The other endpoint of e
0

we call v
1

. The other edge ending at v
1

is called e
1

. We can continue in this way to get v
2

, v
3

, . . .
and e

2

, e
3

, . . . . Now there is also another edge ending at v
0

, which should be called e�1

. Let v�1

be the other endpoint. We can continue to get v�2

, v�3

, . . . and e�2

, e�3

, . . . .
There are two cases to consider:
Case 1: The vertices v

i

, i 2 Z are all distinct. Then for each n 2 Z, we have an embedding

[n, n + 1] ⇠= [�1, 1]
�

n

��! e1
n

. These glue together to give a continuous map f : R �! X. Our
assumption means that f is injective when restricted to Z. We can then see it is globally injective
since its restriction to any (n, n+ 1) is a characteristic map for a cell (thus injective) and all cells
are disjoint. Since M is connected and thus path-connected (M is locally Euclidean) any path
from v

0

to any other point is contained in a finite union of the U
i

’s. It follows that f : R �! M is
surjective.

Finally, we show that f is open. Any open subset of (n, n+ 1) is taken by f to an open subset
of M , since the top-dimension cells are always open in a CW complex. It remains to show that
f takes intervals of the form (n � ✏, n + ✏) to open subsets of M . By taking ✏ small enough, we
can ensure that this image is contained in (the closure of) two 1-cells. We can then see that this
subset of M is open by pulling back along the characteristic maps (pulling back along these two
characteristic maps will give half-open intervals in D1).
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44. Fri, Dec. 13

Case 2: For some n 2 Z and k > 0, we have v
n

= v
n+k

. We may then pick n and k so that
k is minimal. Then the vertices v

n

, . . . , v
n+k�1

are distinct, as are the edges e
n

, . . . , e
n+k�1

. This
implies that the restriction of f to [n, n+ k) is injective. If we consider the restriction only to the
closed interval [n, n+ k], then we get a closed map, since the domain is compact and the target is
Hausdor↵. We claim also that f([n, n+k]) is open in M . Indeed, if we pick any x 2 [n, n+k] which
lies in an interval (i, i + 1), then the open 1-cell e

i

is a neighborhood of f(x) that is contained in
the image of f . If we consider any interior integer n < i < n + k, then e

i�1

[ {v
i

} [ e
i

is an open
neighborhood in the image of f . Finally, e

n

[ {n}e
n+k�1

is a neighborhood of f(n) = f(n+ k) in
M .

Since the image f([n, n + k]) is both closed and open in M and M is connected, we conclude
that f([n, n+ k]) = M . Since f(n) = f(n+ k), we get an induced map

f : [n, n+ k]/⇠ ⇠= S1

�! M

which is a bijection. Since S1 is compact and M is Hausdor↵, this is a homeomorphism. ⌅
We previously also briefly mentioned the idea of a “manifold with boundary”. There is a similar

result:

Theorem 44.1. Every nonempty, connected 1-manifold with boundary is homeomorphic to [0, 1]
if it is compact and to [0, 1) if it is noncompact.

Next semester, we will similarly classify all compact 2-manifolds (the list of answers will be a
little longer).

A closely related idea to CW complex is the notion of simplicial complex. A simplicial complex
is built out of “simplices”. By definition, an n-simplex is the convex hull of n + 1 “a�nely
independent” points in Rk, for k � n + 1. This means that after translating this set so that one
point moves to the origin, the resulting collection of points is linearly independent.

There is a standard n-simplex �n

✓ Rn+1 defined by

�n = {(t
0

, . . . , t
n

) 2 Rn+1

|

X

t
i

= 1, t
i

� 0}.

In general, if � is an n-simplex generated by {t
0

, . . . t
n

}, then the convex hull of any subset is
called a face of the simplex. A (Euclidean) simplicial complex is then a subset of Rk that is a
union of simplices such that any two overlapping simplices meet in a face of each. We also usually
require the collection of simplices to be locally finite.

Since an n-simplex is homeomorphic to Dn, it can be seen that a simplicial complex is a regular
CW complex. A decomposition of a manifold as a simplicial complex is known as a triangulation
of the manifold. Just as one can ask about CW structures on manifolds, one can also ask about
triangulations for manifolds.

Theorem 44.2. (1) Every 1-manifold is triangulable (indeed, we know the complete list of
connected 1-manifolds).

(2) Tibor Radó proved in 1925 that every 2-manifold is triangulable.
(3) Edwin Moise proved in the 1950s that every 3-manifold is triangulable.
(4) Michael Freedman discovered the 4-dimensional E

8

-manifold in 1982, which is not triangu-
lable.

(5) Ciprian Manolescu showed in March 2013 that manifolds in dimension � 5 are not trian-
gulable.
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