3. WED, SEPT. 4

Recall that we were in the midst of proving the following result

Proposition 2.8. Let f : X — Y be a function between metric spaces. The following are
equivalent:

(1) f is continuous
(6) For every convergent sequence (x,) — x in X, the sequence (f(xy,)) converges to f(x) in

Y.

Proof. Tt remains to show that (6) implies continuity. Do this on your homework!
|

What constructions can we make with metric spaces?

Products: Let’s start with a product. That is, if (X,dx) and (Y, Dy) are metric spaces, is there
a good notion of the product metric space? We would want to have “projection” maps to each of
X and Y, and we would want it to be true that to define a continuous map from some metric space
Z to the product, it is enough to specify continuous maps to each of X and Y. By thinking about
the case in which Z has a discrete metric, one can see that the underlying set of the product metric
space would need to be the cartesian product X x Y. The only question is whether or not there is
a sensible metric to define.

Recall that we discussed three metrics on R?: the standard one, the max metric, and the taxicab
metric. There, we used that R> = R x R as an underlying set, and we combined the metrics on
each copy of R to get a metric on R?2. We can use the same idea here to get three different metrics
on X XY, and these will all produce a metric space satisfying the right property to be a product.

Function spaces: Another important construction is that of a space of functions. That is, if X
and Y are metric spaces, one can consider the set of all continuous functions f : X — Y. Is there
a good way to think of this as a metric space? For example, as a set R? is the same as the collection
of functions {1,2} — R. More generally, we could consider functions {1,...,n} — Y or even
N — Y (i.e. sequences).

Of the metrics we discussed on R?, the max metric generalizes most easily to give a metric on
Y = YN, We provisionally define the sup metric on the set of sequences in Y by

dsup((Yn), (2n)) = Stllp{dY(ym Zn)}-

Without any further restrictions, there is no reason that this supremum should always exist. If Y
is a bounded metric space, or if we only consider bounded sequences, then we are OK. Another
option is to arbitrarily truncate the metric.

Lemma 3.1. Let (Y,d) be a metric space. Define the resulting bounded metric d on'Y by

d(y, z) = max{d(y, z),1}.
This is a metric, and the open sets determined by d are precisely the open sets determined by d.

We now redefine the sup metric on Y*° to be
dsup((yn)> (zn)) = SuP{@(?Jm Zn)}

Now the supremum always exists, so that we get a well-defined metric. The same definition works
to give a metric on the set of continuous functions X — Y. We define the sup metric on the set
C(X,Y) of continuous functions to be

dsup(fa g) = Sup{@(f($)7g($))}
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This is also called the uniform metric, for the following reason.

Proposition 3.2. Let (f,) be a sequence in C(X,Y). Then (fy) — [ in the uniform metric on
C(X,Y) if and only if (fn) — f uniformly.

Given a function f € C(X,Y) and a point = € X, one can evaluate the function to get f(x) € Y.
In other words, we have an evaluation function

eval : C(X,Y) x X — Y.

Proposition 3.3. Consider C(X,Y) x X as a metric space using the max metric. Then eval is
continuous.

Proof. We know that to determine if a function between metric spaces is continuous, it it suffices to
check that it takes convergent sequences to convergent sequences. Suppose that (f,,z,) — (f, ).
We wish to show that
eval(fn, xn) = fn(xn) - eval(f,:v) = f(.l‘)

Let € > 0. Since (fpn,xn) — (f,x), it follows that f,, — f and x,, — x (since the projections are
continuous. Then there exists Ny such that if n > N then dgup(fn, f) < €/2. By the definition of
the sup metric, this implies that dy (fn(zn), f(2n)) < €/2. But now f is continuous, so there exists
Ny such that if n > Ny then dy (f(xy,), f(z)) < /2. Putting these together and using the triangle
inequality, if n > N3 = max{Ny, N2} then dy (f,(z,), f(z)) < e. [ |

Proposition 3.4. Suppose ¢ : X XY — Z is continuous. For each x € X, define p(z): Y — Z
by ¢(x)(y) = p(z,y). The function ¢(x) is continuous.

Proof. This could certainly be done directly, using convergence of sequences to test for continuity.
Here is another way to do it, using the universal property of products.

Note that ((z) can be written as the composition ¥ 2% X x YV %, Z. By assumption, ¢ is
continuous, so it suffices to know that i, : Y — X X Y is continuous. But recall that continuous
maps into a product correspond precisely to a pair of continuous maps into each factor. The pair
of maps here is the constant map ¥ — X at x and the identity map ¥ — Y. Both are clearly
continuous, so it follows that 7, is also continuous. [

We are headed to the universal property of the mapping space. Keeping the notation from above,
given a continuous function
p: X XY — Z,

we get a function
o: X —CY,2).
Conversely, given the function ¢, we define ¢ by
p(z,y) = ¢(x)(y)-
Proposition 3.5. The function ¢ above is continuous if and only if ¢ is continuous.

Proof. On homework 2. [ |

4. FRrI, SEPT. 6

Quotients Another important construction that we will discuss when we move on to topological
spaces is that of a quotient, or identification space. A standard example is the identification, on the
unit interval [0, 1], of the two endpoints. Glueing these together gives a circle S, and the surjective
continuous map
™ 1 [0,1] — S
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is called the quotient map. Here the desired universal property is that if f : [0,1] — Y is a
continuous map to another metric space such that f(0) = f(1), then the map f should “factor”
through the quotient. Quotients become quite complicated to express in the world of metric spaces.

Now that we have spent some time with metric spaces, let’s turn to the more general world of
topological spaces.

Definition 4.1. A topological space is a set X with a collection of subsets T of X such that

(H)DeTand X eT
(2) IfU1,Us € T, then Uy NU € T
(3) f U; € T for all ¢ in some index set I, then |JU;erU; € T.

The collection 7T is called the topology on X, and the elements of T are referred to as the “open
sets” in the topology.

Example 4.2. (1) (Metric topology) Any metric space is a topological space, where T is the
collection of metric open sets
(2) (Discrete topology) In the discrete topology, every subset is open. We already saw the
discrete metric on any set, so in fact this is an example of a metric topology as well.
(3) (Trivial topology) In the trivial topology, 7 = {0, X }. That is, ) and X are the only empty
sets. This topology does not come from a metric (unless X has fewer than two points).
(4) It is simple to write down various topologies on a finite set. For example, on the set

X ={1,2},
there are 4 possible topologies. In addition to the trivial and discrete topologies, there is
also
T ={0,{1}, X}
and
T2 = {0, {2}, X}.

(5) There are many possible topologies on X = {1,2,3}. But not every collection of subsets
will give a topology. For instance,

{0,{1},{1,3}, X}
would not be a topology, since it is not closed under intersection.

When working with metric spaces, we saw that the topology was determined by the open balls.
Namely, an open set was precisely a subset that could be written as a union of balls. In many
topologies, there is an analogue of these basic open sets.

Definition 4.3. A basis for a topology on X is a collection B of subsets such that

(1) (Covering property) Every point of x lies in at least one basis element
(2) (Intersection property) If By, Ba € B and x € B; N Ba, then there is a third basis element
B3 such that

r € B3 C B1 N Bs.

A basis B defines a topology 7T by declaring the open sets to be the unions of (arbitrarily many)
basis elements.

Proposition 4.4. Given a basis B, the collection Tg is a topology.

Proof. 1t is clear that open sets are closed under unions. The emptyset is a union of no basis
elements, so it is open. The set X is open by the covering property: the union of all basis elements
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is X. Finally, we check that the intersection of two open sets is open. Let U; and Us be open.

Then
Uy = | J Ba, U2 = | Bs.
a€cA dEA

We want to show that U; N Us is open. Now

U10U2:<UBQ)Q<UB(;>= U B, N Bs.
acA SeA a€ASEA
It remains to show that B,N By is open. By the intersection property of a basis, for each x € B,NBs,
there is some B, with
x € B, € B, N Bs.
It follows that
BoNBs= |J B,
r€BaNBg
so we are done. |

Example 4.5. We have already seen that metric balls form a basis for the metric topology. In the
case of the discrete metric, one can take the balls with radius 1/2, which are exactly the singleton
sets.

Example 4.6. For a truly new example, we take as basis on R, the half-open intervals [a,b). The
resulting topology is known as the lower limit topology on R.

How is this related to the usual topology on R? Well, any open interval (a, b) can be written as a
union of half-open intervals. However, the [a,b) are certainly not open in the usual topology. This
says that Tgtandara © Tee. The lower limit topology has more open sets than the usual topology.
When one topology on a set has more open sets than another, we say it is finer. So the lower limit
topology is finer than the usual topology on R, and the usual topology is coarser than the lower
limit topology.

On any set X, the discrete topology is the finest, whereas the trivial topology is the coarsest.

When a topology is generated by a basis, there is a convenient criterion for open sets.

Proposition 4.7. (Local criterion for open sets) Let Tg be a topology on X generated by a basis
B. Then a set U C X is open if and only if, for each x € U, there is a basis element B, € B with
re B, CU.

Proof. (=) By definition of 7, the set U is a union of basis elements, so any x € U must be
contained in one of these.
(<) We can write U = |,y Be- [

This is a good time to introduce a convenient piece of terminology: given a point = of a space
X, a neighborhood N of z in X is a subset of X containing some open set U with x € U C N.
Often, we will take our neighborhoods to themselves be open.



