
8. Mon, Sept. 16

The last few lectures, we have seen that closed sets are not as easily understood in general as they
are in the case of metric spaces. Although we will not want to restrict ourselves to metric spaces,
it will nevertheless be helpful to have some good characterizations of the ”reasonable” spaces. We
mention here a few of these properties.

Definition 8.1. A space X is said to be Hausdor↵ (also called T

2

) if, given any two points x and
y in X, there are disjoint open sets U and V with x 2 U and y 2 V .

This is a somewhat mild “separation property” that is held by many spaces in practice and that
also has a number of nice consequences.

Proposition 8.2. If X is Hausdor↵, then points are closed in X.

Proof. The neighborhood crtierion for the complement X \ {x} is easy to verify. ⌅
The Hausdor↵ property forces sequences to behave well, in the following sense.

Proposition 8.3. In a Hausdor↵ space, a sequence cannot converge simultaneously to more than
one point.

Proof. Suppose x

n

! x and x

n

! y. Every neighborhood of x contains a tail of x
n

, as does any
neighborhood of y. It follows that no neighborhood of x is disjoint from any neighborhood of y.
Since X is Hausdor↵, this forces x = y. ⌅
Proposition 8.4. Every metric space is Hausdor↵.

Proof. If x 6= y, let d = d(x, y) > 0. Then the balls of radius d/2 centered at x and y are the needed
disjoint neighborhoods. ⌅

However, of the (many, many) topologies on a finite set, the only one that is Hausdor↵ is the
discrete topology. Indeed, if points are closed, then every subset is closed, as it is a finite union of
points.

Another property of metric spaces that we used recently was the existence of the balls of radius
1/n.

Definition 8.5. A space X is first-countable if, for each x 2 X, there is a countable collection
{U

n

} of neighborhoods of x such that any other neighborhood contains at least on of the U

n

.

This was the key property used in proving that, in a metric space, an acuumulation point of
A ✓ X is the limit of an A-sequence.

Example 8.6. The space X = R
cocountable

is not first countable. To see this, let x 2 X and
suppose that {U

n

} is a collection of neighborhoods of x. By definition, each U

n

is open and misses
only countably many real numbers. Write C

n

= R \U
n

. Then C =
S

n

C

n

is also countable, and it
follows that U = X \C is a neighborhood of x. But U does not contain any U

n

because if U
n

✓ U ,
this would mean that C

n

◆ C. Instead, we see that C
n

✓ C, so that U ✓ U

n

for all n. The above
argument is not quite careful enough, since all of the above inclusions could be equalities. To fix
it, simply note that the countable set

S
n

C

n

cannot be all of R, since it is countable. Let C

0 be
the union C, but with one extra element of R added in. Then C

0 is still countable, and each C

n

is
strictly contained in C.

We will return to first-countable (and second-countable) spaces later in the course.
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In Calculus, you saw functions defined piecewise, and one-sided limits were typically employed
to establish continuity. There is an analogue of this type of construction for spaces.

Lemma 8.7 (Glueing/Pasting Lemma). Let X = A[B, and suppose given a function f : X �! Y .
Assume that the restrictions f|A and f|B are both continuous. Then f is continuous, provided that
either (1) both A and B are open in X or (2) both A and B are closed in X.

Proof. We give the proof assuming they are both open. Let V ✓ Y be open. We wish to show that
f

�1(V ) ✓ X is open. Let’s restrict to A. We have f

�1(V ) \A = f

�1

|A (V ). Since f|A is continuous,

it follows that f�1

|A (V ) is open (in A). Since A is open in X, it follows that f�1

|A (V ) is also open in

X. The same argument shows that f1(V ) \ B is open in X. It follows that their unoin, which is
f

�1(V ), is open in X. ⌅

Example 8.8. For example, we can use this to paste together the continuous absolute value
function f(x) = |x|, as a function R �! R. We get this by pasting the continuous functions
◆ : [0,1) �! R, x 7! x, and (�1, 0] ⇠= [0,1) �! R, x 7! �x.

Example 8.9. Looking at an example of a discontinuous function for example

f(x) =

⇢
1 x 6= 1
2 x = 1,

we can get this by pasting together two constant functions, but the domains are R \ {1} and {1},
one of which is open but not closed, and the other of which is closed but not open.

Finally, we start to look at the idea of sameness. Two sets are thought of as the same if there
is a bijection between them. A bijection is simply an invertible function. More generally, we have
the following idea.

Definition 8.10. A “morphism” f : X �! Y is said to be an isomorphism if there is a g : Y �!
X such that g � f = id

X

and f � g = id
Y

.

Again, an isomorphism between sets is simply a bijection. In topology, this is called a homeo-
morphism. In other words, a homeomorphism is a continuous function with a continuous inverse.

9. Wed, Sept. 18

Last time, we discussed the glueing lemma. Let’s look at one more example of this in use.

Example 9.1. Let X = [0, 1] [ [2, 3], given the subspace topology from R. Note that in this case
each of the subsets A = [0, 1] and B = [2, 3] is both open an closed, so we can specify a continuous
function on X by giving a pair of continuous functions, one on A and the other on B.

We introduced the concept of homeomorphism at the end of class last time, which is simply a
continuous map with a continuous inverse. Since such a map is invertible, clearly it must be one-
to-one and onto, but it is not true that every continuous bijection is a homeomorphism. Before we
look at some examples, let’s look at some non-examples.

Example 9.2. (1) Any time a set is equipped with two topologies, one of which is a refinement
of the other, the identity map is a continuous bijection (in one direction) that is not a
homeomorphism. For instance, we have the following such examples

id : R �! R
cofinite

, id : R
cocountable

�! R
cofinite

id : R
discrete

�! R
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(2) Consider the exponential map exp : [0, 1) �! S

1 given by exp(x) = e

2⇡ix. This is a con-
tinuous bijection, but it is not a homeomorphism. Since homeomorphisms have continuous
inverses, they must take open sets to open sets and closed sets to closed sets. But we
see that exp does not take the open set U = [0, 1/2) to an open set in S

1. The point
exp(0) = (1, 0) has no neighborhood that is contained in exp(U).

In the last example, we noted that homeomorphisms must take open sets to open sets. Such a
map is called an open map. Similarly, a closed map takes closed sets to closed sets.

Proposition 9.3. Let f : X �! Y be a continuous bijection. The following are equivalent:

(1) f is a homeomorphism
(2) f is an open map
(3) f is a closed map

If we drop the assumption that f is bijective, it is no longer true that being an open map is
equivalent to being a closed map. For example, the inclusion (0, 1) �! R is open but not closed,
and the inclusion [0, 1] �! R is closed but not open.

Example 9.4. (1) Consider arctan : (0, ⇡
2

) �! (0,1). This is a continuous bijection with
continuous inverse (given by tangent)

(2) Consider ln : (0,1) �! R. This is a continuous bijection with inverse e

x. Composing
homeomorphisms produces homeomorphisms, and we therefore get a homeomorphism

(0, 1)
⇠
=�! (0,

⇡

2
)

⇠
=�! (0,1)

⇠
=�! R.

(3) We similarly get a homeomorphism arctan : [0, ⇡
2

) :
⇠
=�! [0,1). It follows that we have

[0, 1) ⇠= [0,1) and (0, 1] ⇠= [0,1).

(4) One can similarly get Bn

r

(x) ⇠= Rn for any n, r, and x.

The above example shows that there really are only three intervals, up to homeomorphism: the
open interval, the half-open interval, and the closed interval.

We say that two spaces are homeomorphic if there is a homeomorphism between them (and
write X

⇠= Y as aboce). This is the notion of “sameness’ for spaces. One of the major overarching
questions for this course will be: how can we tell when two spaces are the same or are actually
di↵erent?

A standard way to show that two spaces are not homeomorphic is to find a property that one
has and the other does not. For instance every metric space is Hausdor↵, so non non-Hausdor↵
space is the “same” as a metric space. But what property distinguishes the 3 interval types above?
As we learn about more and more properties of spaces, this question will become easier to answer.

We turn now to the construction phase. We considered the product of metric spaces: let’s define
the product for spaces. We already know what property it should satisfy: we want it to be true
that mapping continuously from some space Z into the product X ⇥ Y should be the same as
mapping separately to X and to Y . Another way to describe this is that we want X ⇥ Y to be the
“universal” example of a space with a pairs of maps to X and Y .

Well, if the projection p

X

: X ⇥ Y �! X is to be continuous, we need p

�1

X

(U) = U ⇥ Y to be
open whenever U ✓ X is open. Similarly, we need X ⇥ V to be open if V ✓ Y is open. We are
forced to include these open sets, but we don’t want to throw in anything extra that we don’t need.
In other words, we want the product topology on X⇥Y to be the coarsest topology containing the
sets U ⇥ Y and X ⇥ V .
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Note that if we consider the collecion

B = {U ⇥ Y } [ {X ⇥ V },
this cannot be a basis because it fails the intersection property. A typical intersection is

(U ⇥ Y ) \ (X ⇥ V ) = U ⇥ V,

and if we consider all sets of this form, we do get a basis.

Definition 9.5. Given spaces X and Y , the product topology on X ⇥Y has basis given by sets of
the form U ⇥ V , where U and V are open in X and Y , respectively.

This satisfies the universal property of a product. We have engineered the definition to make
this so, but we will check this next time anyway.

We pointed out above that if we considered the collection

B = {U ⇥ Y } [ {X ⇥ V },
we would not have a basis, as the intersection property failed. We remedied this by considering
instead intersections of elements of B. This is a useful idea that shows up often.

Given a set X, a collection C of subsets of X is called a subbasis for a topology on X if the
collection covers X.

10. Fri, Sept. 20

We can then get a basis from the subbasis by considering finite intersections of subbasis elements.

Example 10.1. The collection of rays (a,1) and (�1, b) give a subbasis for the standard topology
on R.

We introduced the product topology last time and mentioned the universal property, but let’s
spend a little bit of time with it today to really nail down the concept.

Theorem-Definition 10.2. Let X and Y be spaces. Then X⇥Y ,
together with the projection maps

p

X

: X ⇥ Y �! X and p

Y

: X ⇥ Y �! Y,

satisfies the following “universal property”: given any space Z and
maps g : Z �! X and h : Z �! Y , there is a unique continuous
map f : Z �! X ⇥ Y such that

g = p

X

� f, h = p

Y

� f.

X

Z

g

00

h ..

9!f //
X ⇥ Y

p

X

::

p

Y

$$
Y

Proof. The uniqueness is clear: if there exists such a continuous map f , then the conditions force
this to be f = (g, h). The only question is whether or not f is continuous. Consider a typical basis
element U ⇥ V for the product topology on X ⇥ Y . Then

f

�1(U ⇥ V ) = {z 2 Z | f(z) 2 U ⇥ V } = {z 2 Z | g(z) 2 U and h(z) 2 V }
= g

�1(U) \ h

�1(V ),

which is an intersection of open sets and therefore open. ⌅
Ok, so we showed that X ⇥ Y satisfies this property, but why do we call this a “universal

property”?

Proposition 10.3. Suppose W is a space with continuous maps q

X

: W �! X and q

Y

: W �! Y

also satisfying the property of the product. Then W is homeomorphic to X ⇥ Y .
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Proof. The universal property for X ⇥ Y gives us a map f : W �! X ⇥ Y .

X

W

q

X

00

q

Y ..

9!f //
X ⇥ Y

p

X

::

p

Y

$$
Y

But W also has a universal property, so we get a map ' : X ⇥ Y �! W as well.

X

X ⇥ Y

p

X

00

p

Y ..

9!' //
W

q

X

<<

q

Y

""
Y

Now make Pacman eat Pacman!

X

W

q

X

..

q

Y

00

f //
X ⇥ Y

p

X

66

p

Y

((

' //
W

q

X

>>

q

Y

  
Y

We have a big diagram, but if we ignore all dotted lines, there is an obvious horizontal map
W �! W to fill in the diagram, namely the id

W

. Since the universal property guarantees that
there is a unique way to fill it in, we find that ' � f = id

W

. Reversing the pacmen gives the other
equality f � ' = id

X⇥Y

. In other words, f is a homeomorphism, and ' = f

�1. ⌅
This argument may seem strange the first time you see it, but it is a typical argument that

applies any time you define an object via a universal property. The argument shows that any two
objects satisfying the universal property must be “the same”.

Ok, so we understand X ⇥ Y as a topological space. What about a product of more than
two spaces? Well, if we have a finite collection X

1

, . . . , X

n

of spaces, the product topology on
X

1

⇥ · · ·⇥X

n

has basis given by the U

1

⇥ · · ·⇥U

n

, or equivalently, subbasis given by the p

�1

i

(U
i

).
Note that this is equivalent because the basis element U

1

⇥ · · ·⇥ U

n

, is a finite intersection of the
subbasis elements p�1

i

(U
i

).
But what about the product of an arbitrary number of spaces? For instance, we might want to

consider a countable infinite product R⇥ . . . . First, we stop to think about arbitrary products as
sets.

Let X

i

, for i 2 I, be sets. The cartesian product
Y

i2I
X

i

is the collection of tuples (x
i

), where

x

i

2 X

i

. This means that for each i 2 I, we want an element x
i

2 X

i

. In other words, we should
have a function

x� : I �! X =
[

i

X

i
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with the condition that this function satisfies x

i

2 X

i

. With this language, the “projection”Y

i2I
X

i

�! X

i

is simply the restriction along {i} ,! I.

In the case that all X
i

are the same set X, then
Y

i

X

i

is simply the set of functions I �! X.

So, the countably infinite product of R with itself is synonymous with the collection of sequences
in R.

Turning now to the question of a topology on
Y

i

X

i

, we can think about either the basis consisting

or products
Y

i

U

i

, or we can think about the subbasis given by the p�1

i

(U
i

). But these are no longer

equivalent! Which one is the “right” one?
Again, the product topology should be the universal example of a space with continuous maps

to each X

i

. So we want a minimal topology which makes the projection maps continuous. The
topology given by the subbasis p�1

i

(U
i

) satisfies precisely this condition, but the one given by the

basis {
Y

i

U

i

} has more open sets.

Definition 10.4. Suppose given a collection of spaces X

i

. The product topology on
Y

i

X

i

is

generated by the subbasis p�1

i

(U
i

). The box topology on
Y

i

X

i

is generated by the basis {
Y

i

U

i

}.

As discussed above, the box topology has more open sets; in other words, the box topology is
finer than the product topology. To see that the box topology does not have the universal property

we want, consider the following example: let � : R �!
Y

n2N
R be the diagonal map, all of whose

component maps are simply the identity. For each n, let I

n

= (�1

n

,

1

n

). In the box topology, the

subset I =
Y

n

I

n

✓
Y

n

R is an open set, but

��1(I) =
\

n

id�1(I
n

) =
\

n

I

n

= {0}

is not open. So the diagonal map is not continuous in the box topology!
We have established that we should prefer the product topology over the box topology, at least

from a conceptual point of view, but we have only described this in terms of a subbasis, whereas
we have a basis for the box topology. What is a basis for the product topology? By intersecting
finitely many subbasis elements, we get the basis

B
prod

=

(
Y

i

U

i

| U
i

✓ X

i

is open, and only finitely many U

i

are proper subsets

)
.

In other words, we take boxes which are as large as possible in all but finitely many coordinates.
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