
11. Mon, Sept. 23

Last time, we introduced two topologies on a product
Y

i

X

i

of spaces. The box topology

has basis consisting of arbitrary products
Q

i

U

i

, where U

i

✓ X

i

is open. But as we saw, this has
too many open sets. As an example of this, we saw that the diagonal map R �! RN was not
continuous. The second topology, the product topology, was given by the subbasis consisting
of the p

�1

i

(U
i

). This is coarser than the box topology if I is infinite. We left as an exercised the
verification that this has the universal property we would want, namely, that if Z is any space with
continuous maps f

i

: Z �! X

i

for each i in the indexing set, we want to have a (unique) continuous
map f : Z �!

Q
i

X

i

having the f

i

as coordinate maps.

Example 11.1. We mentioned above that the set of sequences in R is the infinite product
Q

n

R.
What does a neighborhood of a sequence (x

n

) look like in this topology? We are only allowed to
constrain finitely many coordinates, so a neighborhood consists of all sequences that are near to
(x

n

) in some fixed, finitely many coordinates.

Example 11.2. Especially for those of you (I hope all!) that continue to 651 next semester, the
spaces I⇥I and S

1⇥S

1 will be important. The first is a product of subspaces of R. By a homework
exercise for this week, this is equivalent to the subspace topology coming from I⇥I ✓ R2. Similarly,
the product space T

2 = S

1 ⇥ S

1 (a torus) can simply be thought of as a subspace of R4.

Proposition 11.3. Let A
i

✓ X

i

for all i 2 I. Then

Y

i

A

i

=
Y

i

A

i

in both the product and box topologies.

Proof. As usual, we have two subsets of
Y

i

X

i

we want to show are the same, so we establish that

each is a subset of the other. The following proof works in both topologies under consideration.

(✓) Let (x
i

) 2
Y

A

i

. We use the neighborhood criterion of the closure to show that (x
i

) 2
Y

i

A

i

.

Thus let U =
Y

i

U

i

be a basic open neighborhood of (x
i

). Then for each j, U
j

is a neighborhood

of x
j

. Since x

j

2 A

j

, it follows that U

j

must meet A

j

in some point, say y

j

. It then follows that

(y
i

) 2 U \
Y

i

A

i

. By the neighborhood criterion, it follows that (x
i

) 2
Y

i

A

i

.

◆) Now suppose that (x
i

) 2
Y

i

A

i

. For each j, let U

j

be a neighborhood of x
j

. Then p

�1

j

(U
j

)

is a neighborhood of (x
i

), so it must meet
Y

i

A

i

. But this means precisely that U

j

meets A

j

. It

follows that x
j

2 A

j

for all j. ⌅

Note that this implies that an (arbitrary) product of closed sets is closed, using either the product
or box topologies. In particular, I2 is closed in R2 and T

2 is closed in R4.

Proposition 11.4. Suppose X

i

is Hausdor↵ for each i 2 I. Then so is
Y

i

X

i

in both product and

box topologies.
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Proof. Let (x
i

) 6= (x0
i

) 2
Y

i

X

i

. Then x

j

6= x

0
j

for some particular j. Since X

j

is Hausdor↵, we

can find disjoint neighborhoods U and U

0 of x
j

and x

0
j

in X

j

. Then p

�1

j

(U) = U ⇥
Y

i 6=j

X

i

and

p

�1

j

(U 0) = U

0⇥
Y

i 6=j

X

i

are disjoint neighborhoods of (x
i

) and (x0
i

) in the product topology, so
Y

i

X

i

is Hausdor↵ in the product topology.
For the box topology, we can either say that the above works just as well for the box topology,

or we can say that since the box topology is a refinement of the product topology and the product
topology is Hausdor↵, it follows that the box topology must also be Hausdor↵. ⌅

The converse is true as well. To see this, we use the fact that a subspace of a Hausdor↵ space

is Hausdor↵. How do we view X

j

as a subspace of
Y

i

X

i

? We can think about an axis inclusion.

Thus pick y

i

2 X

i

for i 6= j. We define

a

j

: X
j

�!
Y

i

X

i

= X

j

⇥
Y

i 6=j

X

i

by
a

j

(x) = (x, (y
i

)).

Note that, by the universal property of the product, in order to check that a

j

is continuous, it
su�ces to check that each coordinate map is continuous. But the coordinate maps are the identity
and a lot of constant maps, all of which are certainly continuous. The map a

j

is certainly injective
(assuming all X

i

are nonempty!), and it is an example of an embedding.

Definition 11.5. A map f : X �! Y is said to be an embedding if it is a homeomorphism onto
its image f(X), equipped with the subspace topology.

We already discussed injectivity and continuity of the axis inclusion a

j

, so it only remains to
show this is open, as a map to a

j

(X
j

). Let U ✓ X

j

be open. Then

a

j

(U) = U ⇥ {(y
i

)} = p

�1

j

(U) \ a

j

(X
j

),

so a

j

(U) is open in the subspace topology on a

j

(X
j

).

We will often do the above sort of exercise: if we introduce a new property or construction, we
will ask how well this interacts with other constructions/properties.

12. Wed., Sept. 25

Towards the end of class last time, we showed that if X
i

is Hausdor↵ for each i 2 I, then
Q

i

X

i

is Hausdor↵. Furthermore, we said that the converse holds as well, but we were not careful enough.
The argument was that we have the axis inclusion X

i

!
Q

i

X

i

, which embeds X
i

as a subspace of
the Hausdor↵ space

Q
i

X

i

. We need one additional assumption to make this work: namely, that
all of the X

i

are nonempty!
We introduced the concept of an embedding at the end of class and saw that the axis inclusion

in a product is an example (if all X
i

are nonempty!). Here is another example.

Example 12.1. Let f : X �! Y be continuous and define the graph of f to be

�(f) = {(x, y) | y = f(x)} ✓ X ⇥ Y.

The function
� : X �! X ⇥ Y, �(x) = (x, f(x))

is an embedding with image �(f).
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Let us verify that this is indeed an embedding. Injectivity is easy (this follows from the fact that
one of the coordinate maps is injective), and continuity comes from the universal property for the
product X⇥Y since id

X

and f are both continuous. Note that (p
Y

)|�(f), which is continuous since
it is the restriction of the continuous projection p

Y

, provides an inverse to �.

The following construction will often be useful.

Proposition 12.2. Let f : X �! Y and f

0 : X 0 �! Y

0 be continuous. Then the product map
f ⇥ f

0 : X ⇥X

0 �! Y ⇥ Y

0 is also continuous.

Proof. This follows very easily from the universal property. If we want to map continuously to
Y ⇥ Y

0, it su�ces to specify continuous maps to Y and Y

0. The continuous map X ⇥X

0 �! Y is
the composition

X ⇥X

0 p

X��! X

f�! Y,

and the other needed map is the composition

X ⇥X

0 p

X

0��! X

0 f

0
�! Y

0
.

⌅

What happens if we turn all of the arrows around in the defining property of a product? We
might call such a thing a “coproduct”. To be precise we would want a space that is universal among
spaces equipped with maps from X and Y . In other words, given a space Z and maps f : X �! Z

and g : Y �! Z, we would want a unique map from the coproduct to Z, making the following
diagram commute.

X

##

f

##
X q Y

9!h //
Z

Y

;;

g

;;

The glueing lemma gave us exactly such a description, in the case that our domain space X was
made up of disjoint open subsets A and B. In general, the answer here is given by the disjoint
union.

Recall that, as a set, the disjoint union of sets X and Y is the subset

X q Y ✓ (X [ Y )⇥ {1, 2},
where X q Y = (X ⇥ {1})[ (Y ⇥ {2}). More generally, given sets X

i

for i 2 I, their disjoint uniona

i

X

i

is the subset

a

i

X

i

✓
 
[

i

X

i

!
⇥ I

given by a

i

X

i

=
[

i

(X
i

⇥ {i}) .

There are natural inclusions ◆
X

: X �! X qY or more generally ◆

X

i

: X
i

,!
a

i

X

i

. We topologize

the coproduct by giving it the finest topology such that all ◆
X

i

are continuous. In other words, a

subset U ✓
a

i

X

i

is open if and only if U \X

i

is open for all i.
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Note that in the case of a coproduct of two spaces, the subspace topology on X ✓ X q Y agrees
with the original topology on X. Furthermore, both X and Y are open in X q Y , so the universal
property for the coproduct is precisely the glueing lemma.

Example 12.3. (1) Consider X = [0, 1] and Y = [2, 3]. Then in this case X q Y is homeo-
morphic to the subspace X [ Y of R. The same is true of these two intervals are changed
to be open or half-open.

(2) Consider X = (0, 1) and Y = {1}. Then XqY is not homeomorphic to (0, 1)[{1} = (0, 1].
The singleton {1} is open in X q Y but not in (0, 1]. Instead, X q Y is homeomorphic to
(0, 1) [ {2}.

(3) Similarly (0, 1)q [1, 2] is homeomorphic to (0, 1) [ [2, 3] but not to (0, 1) [ [1, 2] = (0, 2].
(4) In yet another similar example, (0, 2) q (1, 3) is homeomorphic to (0, 1) [ (2, 3) but not to

(0, 2) [ (1, 3) = (0, 3).

13. Fri, Sept. 27

Proposition 13.1. Let X
i

be spaces, for i 2 I. Then
a

i

X

i

is Hausdor↵ if and only if all X
i

are

Hausdor↵.

Proof. This is even easier than for products. First,X
i

always embeds as a subspace of the coproduct,
so it follows that X

i

is Hausdor↵ if the coproduct is as well. On the other hand, suppose all X
i

are

Hausdor↵ and suppose that x 6= y are points of
a

i

X

i

. Either x and y come from di↵erent X
i

’s, in

which case the X

i

’s themselves serve as the disjoint neighborhoods. The alternative is that x and
y live in the same Hausdor↵ X

i

, but then we can find disjoint neighborhoods in X

i

. ⌅

The next important construction is that of a quotient, or identification space.
The general setup is that we have a surjective map q : X �! Y , which we view as making an

identification of points in X. More precisely, suppose that we have an equivalence relation ⇠ on
X. We can consider the set X/ ⇠ of equivalence classes in X. There is a natural surjective map
q : X �! X/ ⇠ which takes x 2 X to its equivalence class.

And in fact every surjective map is of this form. Suppose that q : X �! Y is surjective. We
define a relation on X by saying that x ⇠ x

0 if and only if q(x) = q(x0). Then the function
X/ ⇠�! Y sending the class of x to q(x) is a bijection.

We want to mimic the above situation in topology, but to understand what this should mean,
we first look at the universal property of the quotient for sets. This says: if f : X �! Z is a
function that is constant on the equivalence classes in X, then there is a (unique) factorization
g : X/ ⇠�! Z with g � q = f .

We want to have a similar setup in topology. Said in the equivalence relation framework, given a
space X and a relation ⇠ on X, we want a continuous map q : X �! Y such that given any space
Z with a continuous map f : X �! Z which is constant on equivalence classes, there is a unique
continuous map g : Y �! Z such that g � q = f . By considering the cases in which Z is a set with
the trivial topology, so that maps to Z are automatically continuous, we can see that on the level
of sets q : X �! Y must be X �! X/ ⇠. It remains only to specify the topology on Y = X/ ⇠.

We want the topological quotient to be the universal example of a continuous map out of X
which is constant on equivalence classes. Universal here means that we always want to have a map
Y �! Z whenever f : X �! Z is another such map. Since we want to construct maps out of Y,
this suggests we should include as many open sets as possible in Y . This leads to the following
definition.
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Definition 13.2. We say that a surjective map q : X �! Y is a quotient map if V ✓ Y is open
if and only if q�1(V ) is open in X.

One implication is the definition of continuity, but the other is given by our desire to include as
many opens as we can.

Proposition 13.3. (Universal property of the quotient) Let q : X �! Y be a quotient map. If Z
is any space, and f : X �! Z is any continuous map that is constant on the fibers1 of q, then there
exists a unigue continuous g : Y �! Z such that g � q = f .

Proof. It is clear how g must be defined: g(y) = f(x) for any x 2 q

�1(y). It remains to show that
g is continuous. Let W ✓ Z be open. We want g�1(W ) ✓ Y to be open as well. By the definition
of a quotient map, g�1(W ) is open if and only if q�1(g�1(W )) = (g � q)�1(W ) = f

�1(W ) is open,
so we are done by continuity of f . ⌅
Example 13.4. Define q : R �! {�1, 0, 1} by

q(x) =

⇢
0 x = 0
|x|
x

x 6= 0.

What is the resulting topology on {�1, 0, 1}? The points �1 and 1 are open, and the only open
set containing 0 is the whole space.

Note that this example shows that a quotient of a Hausdor↵ space need not be Hausdor↵.

Proposition 13.5. Let q : X �! Y be a continuous, surjective, open map. Then q is a quotient
map. The same is true if q is closed instead of open.

Proof. One implication is simply the definition of continuity. For the other, suppose that V ✓ Y is
a subset such that q�1(V ) ✓ X is open. Then q(q�1(V )) is open since q is open. Finally, we have
V = q(q�1(V )) since q is surjective. ⌅

The converse is not true, however, as the next example shows.

Example 13.6. Consider q;R �! [0,1) given by

q(x) =

⇢
0 x  0
x x � 0.

The quotient topology on [0,1) is the same as the subspace topology it gets from R. But this is
not an open map, since the image of (�2,�1) is {0}, which is not open.

1A “fiber” is simply the preimage of a point.
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