
14. Mon, Sept. 30

Last time, we defined the quotient topology coming from a continuous surjection q : X �! Y .
Recall that q is a quotient map (and Y has the quotient topology) if V ✓ Y is open precisely when
q�1(V ) ✓ X is open.

Example 14.1. (Collapsing a subspace) Let A ✓ X be a subspace. We define a relation on X as
follows: x ⇠ y if both are points in A or if neither is in A and x = y. Here, we have one equivalence
class for the subset A, and every point outside of A is its own equivalence class. Standard notation
for the set X/ ⇠ of equivalence classes under this relation is X/A. The universal property can be
summed up as saying that any map on X which is constant on A factors through the quotient X/A.

For example, we considered last time the example R/(�1, 0] ⇠= [0,1).

Example 14.2. Consider @I ✓ I. The exponential map e : I �! S1 is constant on @I, so we get
an induced continuous map ' : I/@I �! S1, which is easily seen to be a bijection. In fact, it is
a homeomorphism. Once we learn about compactness, it will be easy to see that this is a closed
map.

We show instead that it is open. A basis for I/@I is given by q(a, b) with 0 < a < b < 1 and by
q([0, a) [ (b, 1]) with again 0 < a < b < 1. It is clear that both are taken to basis elements for the
subspace topology on S1. It follows that ' is a homeomorphism.

Example 14.3. Generalizing the previous example, for any closed ballDn ✓ Rn+1, we can consider
the quotientDn/@Dn. On your homework this week, you are asked to provide a continuous bijection
Dn/@Dn �! Sn. Again, we will see later that this must be a homeomorphism Dn/@Dn ⇠= Sn.

Example 14.4. On Sn we impose the equivalence relation x ⇠ �x. The resulting quotient space
is known as n-dimensional real projective space and is denoted RPn.

Consider the case n = 1. We have the hemisphere inclusion I ,! S1 given by x 7! eix⇡. Then
the composition I ,! S1 ⇣ RP1 is a quotient map that simply identifies the boundary @I to a
point. In other words, this is example 14.1 from above, and we conclude that RP1 ⇠= S1. However,
the higher-dimensional versions of these spaces are certainly not homeomorphic.

Example 14.5. Consider S2n�1 as a subspace of Cn. We then have the coordinate-wise multipli-
cation by elements of S1 ⇠= U(1) on Cn. This multiplication restricts to a multiplication on the
subspace S2n�1, and we impose an equivalence relation (z
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) for all � 2 S1.
The resulting quotient space is the complex projective space CPn.

Example 14.6. On I⇥I, we impose the relation (0, y) ⇠ (1, y) and also the relation (x, 0) ⇠ (x, 1).
The resulting quotient space is the torus T 2 = S1 ⇥ S1. We recognize this as the product of two
copies of example 14.1, but beware that in general a product of quotient maps need not be a
quotient map. torus

We discussed last time the fact that a quotient map need not be open. Nevertheless, there is a
class of open sets that are always carried to open sets.

Definition 14.7. Let q : X �! Y be a continuous surjection. We say a subset A ✓ X is saturated
(with respect to q) if it is of the form q�1(V ) for some subset V ✓ Y .

It follows that A is saturated if and only if q�1(q(A)) = A. Recall that a fiber of a map
q : X �! Y is the preimage of a single point. Then another description is that A is saturated if
and only if it contains all fibers that it meets.

Proposition 14.8. A continuous surjection q : X ⇣ Y is a quotient map if and only if it takes
saturated open sets to saturated open sets.
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Proof. Exercise. ⌅

A number of the examples above have secretly been examples of a more general construction,
namely the quotient under the action of a group.

Definition 14.9. A topological group is a based space (G, e) with a continuous multiplication
m : G⇥G �! G and inverse i : G �! G satisfying all of the usual axioms for a group.

Remark 14.10. Munkres requires all topological groups to satisfy the condition that points are
closed. We will not make this restriction, though the examples we will consider will all satisfy this.

15. Wed, Oct. 2

Last time, we introduced the idea of a topological group, which is simultaneously a group and a
space, where the multiplication and inverse are required to be continuous.

Example 15.1. (1) Any group G can be considered as a topological group equipped with the
discrete topology. For instance, we have the cyclic groups Z and C

n

= Z/nZ.
(2) The real line R is a group under addition, This is a topological group because addition and

multiplication by �1 are both continuous. Note that here Z is at the same time both a
subspace and a subgroup. It is thus a topological subgroup.

(3) If we remove zero, we get the multiplicative group R⇥ = R \ {0} of real numbers.
(4) Inside R⇥, we have the subgroup {1,�1} of order two.
(5) Rn is also a topological group under addition. In the case n = 2, we often think of this as

C.
(6) Again removing zero, we get the multiplicative group C⇥ = C \ {0} of complex numbers.
(7) Inside C⇥ we have the subgroup of complex numbers of norm 1, aka the circle group

S1 ⇠= U(1) = SO(2).
(8) This last example suggests that matrix groups in general are good candidates. For instance,

we have the topological group Gl
n

(R). This is a subspace ofM
n

(R) ⇠= Rn

2
. The determinant

mapping det : M
n

(R) �! R is polynomial in the coe�cients and therefore continuous. The
general linear group is the complement of det�1(0). It follows that Gl

n

(R) is an open
subspace of Rn

2
.

(9) Inside Gl
n

(R), we have the closed subgroups Sl
n

(R), O(n), SO(n).

Let G be a topological group and fix some h 2 G. Define L
h

: G �! G by L
h

(g) = hg. This is
left multiplication by h. The definition of topological group implies that this is continuous, as L

h

is the composition

G
(h,id)���! G⇥G

m�! G.

Moreover, L
h

�1 is clearly inverse to L
h

and continuous by the same argument, so we conclude that
each L

h

is a homeomorphism. Since L
h

(e) = h, we conclude that neighborhoods around h look like
neighborhoods around e. Since h was arbitrary, we conclude that neighborhoods around one point
look like neighborhoods around any other point. This implies that a space like the unoin of the
coordinate axes in R2 cannot be given the structure of topological group, as neighborhoods around
the origin do not resemble neighborhoods around other points.

The main reason for studying topological groups is to consider their actions on spaces.

Definition 15.2. Let G be a topological group and X a space. A left action of G on X is a map
a : G ⇥ X �! X which is associative and unital. This means that a(g, a(h, x)) = a(gh, x) and
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a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams

G⇥G⇥X
id⇥a //

m⇥id

✏✏

G⇥X

a

✏✏
G⇥X

a

// X

X
e,id //

id ##

G⇥X

a

✏✏
X.

It is common to write g · x or simply gx rather than a(g, x).

Given an action of G on a space X, we define a relation on X by x ⇠ y if y = g · x for some g.
The equivalence classes are known as orbits of G in X, and the quotient of X by this relation is
typically written as X/G. Really, the notation X/G should be reserved for the quotient by a right
action of G on X, and the quotient by a left action should be G\X.

Example 15.3. (1) For any G, left multiplication gives an action of G on itself! This is a
transitive action, meaning that there is only one orbit, and the quotient G/G is just a
point.

Note that we saw above that, for each h 2 G, the map L
h

: G �! G is a homeomor-
phism. This generalizes to any action. For each g 2 G, the map a(g,�) : X �! X is a
homeomorphism.

(2) For any (topological) subgroup H  G, left multiplication by elements of H gives a left
action of H on G. Note that an orbit here is precisely a right coset Hg. The quotient is
H\G, the set of right cosets of H in G.

(3) Consider the subgroup Z  R. Since R is abelian, we don’t need to worry about about left
vs. right actions or left vs. right cosets. We then have the quotient R/Z, which is again a
topological group (again, R is abelian, so Z is normal).

What is this group? Once again, consider the exponential map exp : R �! S1 given by
exp(x) = e2⇡ix. This is surjective, and it is a homomorphism since

exp(x+ y) = exp(x) exp(y).

The First Isomorphism Theorem in group theory tells us that S1 ⇠= R/ ker(exp), at least
as a group. The kernel is precisely Z  R, and it follows that S1 ⇠= R/Z as a group. To
see that this is also a homeomorphism, we need to know that exp : R �! S1 is a quotient
map, but this follows from our earlier verification that I �! S1 is a quotient.

(4) Similarly, we can think of Zn acting on Rn, and the quotient is Rn/Zn ⇠= (S1)n = Tn.
(5) The group Gl(n) acts on Rn (just multiply a matrix with a vector), but this is not terribly

interesting, as there are only two orbits: the origin is a closed orbit, and the complement is
an open orbit. Thus the quotient space consists of a closed point and an open point.

(6) More interesting is the action of the subgroup O(n) on Rn. Using the fact that orthogonal
matrices preserve norms, it is not di�cult to see that the orbits are precisely the spheres
around the origin. We claim that the quotient is the space [0,1) (thought of as a subspace
of R).

To see this, consider the continuous surjection |� | : Rn �! [0,1). By considering how
this acts on open balls, you can show that this is an open map and therefore a quotient.
But the fibers of this map are precisely the spheres, so it follows that this is the quotient
induced by the above action of O(n).

16. Fri, Oct. 4

At the end of class last time, we were looking at the example of O(n) acting on Rn, and we
claimed that the quotient was [0,1). We saw that the relation coming from the O(n)-action was
the same as that coming from the surjection Rn �! [0,1). Namely, we identify points if and
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only if they have the same norm. To see that the quotient by the O(n)-action is homeomorphic to
[0,1), it remains to show that the norm map Rn �! [0,1) is a quotient map. We know already
that it is a continuous surjection, and by considering basis elements (open balls) in Rn, we can see
that it is open as well. We leave this verification to the industrious student!

Why does the above argument show that the quotient Rn/O(n) is homeomorphic to [0,1). We
now have two quotient maps out of Rn, and they are defined using the same equivalence relation
on Rn. By the universal property of quotients, the two spaces are homeomorphic!

Let’s get on with more examples.

Example 16.1. (1) Let R⇥ act on Rn via scalar multiplication. This action preserves lines,
and within each line there are two orbits, one of which is the origin. Note that the only
saturated open set containing 0 is Rn, so the only neighborhood of 0 in the quotient is the
entire space.

(2) Switching from n to n + 1 for convenience, we can remove that troublesome 0 and let R⇥

act on X
n+1

= Rn+1 \ {0}. Here the orbits are precisely the lines (with origin removed).
The quotient is RPn.

To see this, recall that we defined RPn as the quotient of Sn by the relation x ⇠ �x.
This is precisely the relation that arises from the action of the subgroup C

2

= {1,�1}  R⇥

on Sn ✓ Rn+1.

Now notice that the map Rn+1 \ {0} �! Sn ⇥ R
>0

given by x 7!
⇣

x

kxk , kxk
⌘

is a

homeomorphism. Next, note that we have an isomorphism R⇥ ⇠= C
2

⇥ R⇥
>0

. Thus the

quotient (Rn+1\{0})/R⇥ can be viewed as the two step quotient
⇣
(Sn�1⇥R

>0

)/R⇥
>0

)
⌘
/C

2

.

But (Rn�1 ⇥ R
>0

)/R⇥
>0

⇠= Sn�1, so we are done.
We can think of RPn in yet another way. Consider the following diagram:

Dn //

✏✏✏✏

Sn //

✏✏✏✏

Rn+1 \ {0}

✏✏✏✏

Dn/ ⇠ // Sn/C
2

// Rn+1 \ {0}/R⇥

The map Dn �! Sn is the inclusion of a hemisphere. The relation on Dn is the relation
x ⇠ �x, but only allowed on the boundary @Dn. All maps on the bottom are continuous
bijections, and again we will see later that they are necessarily homeomorphisms.

Note that the relation we imposed on Dn does not come from an action of C
2

on Dn.
Let us write C

2

= h�i. We can try defining

� · x =

⇢
x x 2 Int(Dn)
�x x 2 @(Dn),

where here the interior and boundary are taken in Sn. But this is not continuous, as the
convergent sequence

 r
1� 1

n
, 0, . . . , 0,

r
1

n

!
! (1, 0, . . . , 0)

is taken by � to a convergent sequence, but the new limit is not �(1, 0, . . . , 0) =
(�1, 0, . . . , 0).

(3) We have a similar story for CPn. There is an action of C⇥ on Cn+1 \ {0}, and the orbits
are the punctured complex lines. We claim that the quotient is CPn.

We defined CPn as a quotient of an S1-action on S2n+1. We also have a homeomorphism
Cn+1 \ {0} ⇠= S2n+1⇥R

>0

and an isomorphism C⇥ ⇠= S1⇥R⇥
>0

. We can then describe CPn
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as the two-step quotient
�
Cn+1 \ {0}

�
/C⇥ ⇠=

⇣
(S2n+1 ⇥ R

>0

)/R⇥
>0

⌘
/S1 ⇠= S2n+1/S1 = CPn.
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