
23. Mon, Oct. 21

Like connectedness, compactness is preserved by continuous functions.

Proposition 23.1. Let f : X �! Y be continuous, and assume that X is compact. Then f(X) is
compact.

Proof. Let V be an open cover of f(X). Then U = {f�1(V ) | V 2 V} is an open cover of X. Let
{U

1

, . . . , U
k

} be a finite subcover. It follows that the corresponding {V
1

, . . . , V
k

} is a finite subcover
of V. ⌅
Example 23.2. Recall that we have the quotient map exp : [0, 1] �! S1. It follows that S1 is
compact.

Theorem 23.3 (Extreme Value Theorem). Let f : [a, b] �! R be continuous. Then f attains a
maximum and a minimum.

Proof. Since f is continuous and [a, b] is both connected and compact, the same must be true of
its image. But the compact, connected subsets are precisely the closed intervals. ⌅

The following result is also quite useful.

Proposition 23.4. Let X be Hausdor↵ and let A ✓ X be a compact subset. Then A is closed in
X.

Proof. Pick any point x 2 X \ A (if we can’t, then A = X and we are done). For each a 2 A, we
have disjoint neighborhoods a 2 U

a

and x 2 V
a

. Since the U
a

cover A, we only need finitely many,
say U

a1 , . . . , Ua

k

to cover A. But then the intersection

V = V
a1 \ · · · \ V

a

k

of the corresponding V
a

’s is disjoint from the union of the U
a

’s and therefore also from A. Since
V is a finite intersection of open sets, it is open and thus gives a neighborhood of x in X \ A. It
follows that A is closed. ⌅
Exercise 23.5. If A ✓ X is closed and X is compact, then A is compact.

Combining these results gives the following long-awaited consequence.

Corollary 23.6. Let f : X �! Y be continuous, where X is compact and Y is Hausdor↵, then f
is a closed map.

In particular, if f is already known to be a continuous bijection, then it is automatically a home-
omorphism. For example, this shows that the map I/@I �! S1 is a homeomorphism. Similarly,
from Homework 5 we have Dn/@Dn ⇠= Sn.

We will next show that finite products of compact spaces are compact, but we first need a lemma.

Lemma 23.7 (Tube Lemma). Let X be compact and Y be any space. If W ✓ X ⇥ Y is open and
contains X ⇥ {y}, then there is a neighborhood V of y with X ⇥ V ✓ W .

Proof. For each x 2 X, we can find a basic neighborhood U
x

⇥ V
x

of (x, y) in W . The U
x

’s give
an open cover of X, so we only need finitely many of them, say U

x1 , . . . , Ux

n

. Then we may take
V = V

x1 \ · · · \ V
x

n

. ⌅
Proposition 23.8. Let X and Y be nonempty. Then X ⇥ Y is compact if and only if X and Y
are compact.
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Proof. As for connectedness, the continuous projections makeX and Y compact ifX⇥Y is compact.
Now suppose that X and Y are compact and let U be an open cover. For each y 2 Y , the cover

U of X ⇥ Y certainly covers the slice X ⇥ {y}. This slice is homeomorphic to X and therefore
finitely-covered by some V ⇢ U . By the Tube Lemma, there is a neighborhood V

y

of y such that
the tube X ⇥ V

y

is covered by the same V. Now the V
y

’s cover Y , so we only need finitely many
of these to cover X. Since each tube is finitely covered by U and we can cover X ⇥ Y by finitely
many tubes, it follows that U has a finite subcover. ⌅
Theorem 23.9 (Heine-Borel). A subset A ✓ Rn is compact if and only if it is closed and bounded.

Proof. Suppose A is compact. Then A must be closed in Rn since Rn is Hausdor↵. The subset A
must also be bounded according to Homework problem VI.5.

On the other hand, suppose that A is closed and bounded in Rn. Since A is bounded, it is
contained in [�k, k]n for some k > 0. But this product of intervals is compact since each interval
is compact. Now A is a closed subset of a compact space, so it is compact. ⌅

Again, we have shown that compactness interacts well with finite products, and we would like
a similar result in the arbitrary product case. This is a major theorem, known as the Tychono↵
theorem. First, we show the theorem does not hold with the box topology.

Example 23.10. Let D = [�1, 1] and consider DN, equipped with the box topology. For each k,
let

U
k

= DN \
⇣

(�2k, 2k)⇥ (�2k�1, 2k�1 ⇥ . . .
⌘

.

So

U
1

= [�1, 1]⇥ (�1, 1)⇥ (�1/2, 1/2)⇥ (�1/4, 1/4)⇥ . . .

and

U
2

= [�1, 1]⇥ [�1, 1]⇥ (�1, 1)⇥ (�1/2, 1/2)⇥ . . .

Then U = {U
k

} is an open cover with no finite subcover.

24. Wed, Oct. 23

It turns out that the Tychono↵ Theorem is equivalent to the axiom of choice. We will thus use
a form of the axiom of choice in order to prove it.

Zorn’s Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an
upper bound in P , then P contains at least one maximal element.

Theorem 24.1 (Tychono↵). Let X
i

6= ; for all i 2 I. Then
Y

i

X
i

is compact if and only if each

X
i

is compact.

Proof. As we have seen a number of times, the implication ()) is trivial.

We now show the contrapositive of ((). Thus assume that X =
Y

i

X
i

is not compact. We wish

to conclude that one of the X
i

must be noncompact. By hypothesis, there exists an open cover U
of X with no finite subcover.

We first deal with the following case.

Special case: U is a cover by subbasis elements.
For each i 2 I, let U

i

be the collection

U
i

= {V ✓ X
i

open | p�1

i

(V ) 2 U}.
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For some i, the collection U
i

must cover X
i

, since otherwise we could pick x
i

2 X
i

for each i with

x
i

not in the union of U
i

. Then the element (x
i

) 2
Y

i

X
i

would not be in U since it cannot be

in any p�1

i

(V ). Then U
i

cannot have a finite subcover, since that would provide a corresponding
subcover of U . It follows that X

i

is not compact.

It remains to show that we can always reduce to the cover-by-subbasis case.
Consider the collection N of open covers of X having no finite subcovers. By assumption, this

set is nonempty, and we can partially order N by inclusion of covers. Furthermore, if {U
↵

} is a
linearly order subset of N , then U =

S

↵

U
↵

is an open cover, and it cannot have a finite subcover
since a finite subcover of U would be a finite subcover of one of the U

↵

. Thus U is an upper bound
in N for {U

↵

}. By Zorn’s Lemma, N has a maximal element V.
Now let S ✓ V be the subcollection consisting of the subbasis elements in V. We claim that S

covers X. Suppose not. Thus let x 2 X such that x is not covered by S. Then x must be in V for
some V 2 V. By the definition of the product topology, x must have a basic open neighborhood in
B ⇢ V . But any basic open set is a finite intersection of subbasic open sets, so B = S

1

\ . . . S
k

. If
x is not covered by S, then none of the S

i

are in S. Thus V [ {S
i

} is not in N by maximality of
V. In other words, V [ {S

i

} has a finite subcover {V
i,1

, . . . , V
i,n

i

, S
1

}. Let us write

V̂
i

= V
i,1

[ · · · [ V
i,n

i

.

Now

X =
\

i

⇣

S
i

[ V̂
i

⌘

✓
⇣

\

i

S
i

⌘

[
⇣

[

i

V̂
i

⌘

✓ V [
⇣

[

i

V̂
i

⌘

This shows that V has a finite subcover, which contradicts that V 2 N . We thus conclude that S
covers X using only subbasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite
subcover. This is a contradiction. ⌅

As we said already, Tychono↵’s theorem is equivalent to the axiom of choice (which is equivalent
to Zorn’s Lemma).

Theorem 24.2. Tychono↵ ) axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let X
i

6= ; for all i 2 I.
We want to show that X =

Y

i

X
i

6= ;.

For each i, define Y
i

= X
i

[{1
i

}, where 1
i

/2 X
i

. We topologize Y
i

such that the only nontrivial
open sets are X

i

and {1
i

}. Now for each i, let U
i

= p�1

i

(1
i

). The collection U = {U
i

} gives a

collection of open subsets of Y =
Y

i

Y
i

, and this collection covers Y if and only if X = ;. Each Y
i

is compact since it has only four open sets. Thus Y must be compact by the Tychono↵ theorem.
But no finite subcollection of U can cover Y . For example, U

i

[ U
j

does not cover Y since a 2 X
i

and b 2 X
j

, then we can define (y
i

) 2 Y \ (U
i

[ U
j

) by

y
k

=

8

<

:

a k = i
b k = j

1
k

k 6= i, j

The same kind of argument will work for any finite collection of U
i

’s. Since U has no finite subcover
and Y is compact, U cannot cover Y , so that X must be nonempty. ⌅
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25. Fri, Oct. 25

(Start with sketch proof of S1 ^ S1 ⇠= S2 from Homework V).

Closely related to compactness is the following notion.

Definition 25.1. We say that a space X is sequentially compact if every sequence in X has a
convergent subsquence.

Example 25.2. The open interval (0, 1) is not sequentially compact because {1/n} has no subse-
quence that converges in (0, 1). If we consider instead [0, 1], this example no longer works, and we
will see that [0, 1] is indeed sequentially compact.

In general, there is no direct relation between compactness and sequential compactness.

Example 25.3. Consider X = II . By the Tychono↵ theorem, X is compact. However, it is not
sequentially compact. Let f

n

2 X be defined by f
n

(x) = the nth digit in the binary expansion
of x. We claim that (f

n

) has no convergent subsequence. Recall that convergence in X means
pointwise convergence of functions. Let (f

n

k

) be any subsequence. In order for this to converge, it
the sequence f

n

k

(x) would need to converge for every x. This is simply a sequence of 0’s and 1’s,
so it must be eventually constant. But no matter the subsequence f

n

k

, we can find an x 2 I whose
corresponding sequence of digits is not eventually constant.

Example 25.4. Let

X =
n

x 2
Y

R
{0, 1}

�

�

�

x�1(1) is countable.
o

We here consider {0, 1} with the discrete topology, and X is a subspace of the product. For each
r 2 R, let B

r

= {x 2 X | x(r) = 0}. This is a subbasis element and so is open. Then the collection
{B

r

}
r2R gives an open cover of X, but it clearly has no finite subcover.

Now let (x
n

) be a sequence in X. Let

S =
[

n

x�1

n

(1).

S is a countable union of countable sets, so it is countable. Let Y =
Y

S

{0, 1}, and let q : X �! Y

be the restriction along S ,! R. Then q(x
n

) is a sequence in Y = {0, 1}S . It can be seen directly
that Y is sequentially compact, so that some subsequence q(x

n

k

) of q(x
n

) must converge to, say
y 2 Y . Let z 2 X be the function with x�1(1) = y�1(1). But then x

n

k

converges to z since each
x
n

is identically 0 on R \ S.
We have shown that X is sequentially compact spaces but not compact.

Theorem 25.5. If X is a metric space, then X is compact if and only if it is sequentually compact.

Proof. See Munkres, Theorem 28.2 or Lee, Lemmas 4.42-4.44. ⌅
In Rn, this result is knwon by the following name.

Theorem 25.6 (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergent subse-
quence.
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