23. Mon, Oct. 21

Like connectedness, compactness is preserved by continuous functions.

Proposition 23.1. Let $f : X \longrightarrow Y$ be continuous, and assume that X is compact. Then f(X) is compact.

Proof. Let \mathcal{V} be an open cover of f(X). Then $\mathcal{U} = \{f^{-1}(V) \mid V \in \mathcal{V}\}$ is an open cover of X. Let $\{U_1, \ldots, U_k\}$ be a finite subcover. It follows that the corresponding $\{V_1, \ldots, V_k\}$ is a finite subcover of \mathcal{V} .

Example 23.2. Recall that we have the quotient map $\exp : [0,1] \longrightarrow S^1$. It follows that S^1 is compact.

Theorem 23.3 (Extreme Value Theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Then f attains a maximum and a minimum.

Proof. Since f is continuous and [a, b] is both connected and compact, the same must be true of its image. But the compact, connected subsets are precisely the closed intervals.

The following result is also quite useful.

Proposition 23.4. Let X be Hausdorff and let $A \subseteq X$ be a compact subset. Then A is closed in X.

Proof. Pick any point $x \in X \setminus A$ (if we can't, then A = X and we are done). For each $a \in A$, we have disjoint neighborhoods $a \in U_a$ and $x \in V_a$. Since the U_a cover A, we only need finitely many, say U_{a_1}, \ldots, U_{a_k} to cover A. But then the intersection

$$V = V_{a_1} \cap \cdots \cap V_{a_k}$$

of the corresponding V_a 's is disjoint from the union of the U_a 's and therefore also from A. Since V is a finite intersection of open sets, it is open and thus gives a neighborhood of x in $X \setminus A$. It follows that A is closed.

Exercise 23.5. If $A \subseteq X$ is closed and X is compact, then A is compact.

Combining these results gives the following long-awaited consequence.

Corollary 23.6. Let $f : X \longrightarrow Y$ be continuous, where X is compact and Y is Hausdorff, then f is a closed map.

In particular, if f is already known to be a continuous bijection, then it is automatically a homeomorphism. For example, this shows that the map $I/\partial I \longrightarrow S^1$ is a homeomorphism. Similarly, from Homework 5 we have $D^n/\partial D^n \cong S^n$.

We will next show that finite products of compact spaces are compact, but we first need a lemma.

Lemma 23.7 (Tube Lemma). Let X be compact and Y be any space. If $W \subseteq X \times Y$ is open and contains $X \times \{y\}$, then there is a neighborhood V of y with $X \times V \subseteq W$.

Proof. For each $x \in X$, we can find a basic neighborhood $U_x \times V_x$ of (x, y) in W. The U_x 's give an open cover of X, so we only need finitely many of them, say U_{x_1}, \ldots, U_{x_n} . Then we may take $V = V_{x_1} \cap \cdots \cap V_{x_n}$.

Proposition 23.8. Let X and Y be nonempty. Then $X \times Y$ is compact if and only if X and Y are compact.

Proof. As for connectedness, the continuous projections make X and Y compact if $X \times Y$ is compact.

Now suppose that X and Y are compact and let \mathcal{U} be an open cover. For each $y \in Y$, the cover \mathcal{U} of $X \times Y$ certainly covers the slice $X \times \{y\}$. This slice is homeomorphic to X and therefore finitely-covered by some $\mathcal{V} \subset \mathcal{U}$. By the Tube Lemma, there is a neighborhood V_y of y such that the tube $X \times V_y$ is covered by the same \mathcal{V} . Now the V_y 's cover Y, so we only need finitely many of these to cover X. Since each tube is finitely covered by \mathcal{U} and we can cover $X \times Y$ by finitely many tubes, it follows that \mathcal{U} has a finite subcover.

Theorem 23.9 (Heine-Borel). A subset $A \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Proof. Suppose A is compact. Then A must be closed in \mathbb{R}^n since \mathbb{R}^n is Hausdorff. The subset A must also be bounded according to Homework problem VI.5.

On the other hand, suppose that A is closed and bounded in \mathbb{R}^n . Since A is bounded, it is contained in $[-k,k]^n$ for some k > 0. But this product of intervals is compact since each interval is compact. Now A is a closed subset of a compact space, so it is compact.

Again, we have shown that compactness interacts well with finite products, and we would like a similar result in the arbitrary product case. This is a major theorem, known as the Tychonoff theorem. First, we show the theorem does not hold with the box topology.

Example 23.10. Let D = [-1, 1] and consider $D^{\mathbb{N}}$, equipped with the box topology. For each k, let

$$U_k = D^{\mathbb{N}} \cap \left((-2^k, 2^k) \times (-2^{k-1}, 2^{k-1} \times \dots) \right).$$

So

$$U_1 = [-1,1] \times (-1,1) \times (-1/2,1/2) \times (-1/4,1/4) \times \dots$$

and

$$U_2 = [-1, 1] \times [-1, 1] \times (-1, 1) \times (-1/2, 1/2) \times \dots$$

Then $\mathcal{U} = \{U_k\}$ is an open cover with no finite subcover.

24. WED, OCT. 23

It turns out that the Tychonoff Theorem is *equivalent* to the axiom of choice. We will thus use a form of the axiom of choice in order to prove it.

Zorn's Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an upper bound in P, then P contains at least one maximal element.

Theorem 24.1 (Tychonoff). Let $X_i \neq \emptyset$ for all $i \in \mathcal{I}$. Then $\prod_i X_i$ is compact if and only if each

 X_i is compact.

Proof. As we have seen a number of times, the implication (\Rightarrow) is trivial.

We now show the contrapositive of (\Leftarrow). Thus assume that $X = \prod_{i} X_i$ is not compact. We wish

to conclude that one of the X_i must be noncompact. By hypothesis, there exists an open cover \mathcal{U} of X with no finite subcover.

We first deal with the following case.

Special case: \mathcal{U} is a cover by subbasis elements. For each $i \in \mathcal{I}$, let \mathcal{U}_i be the collection

$$\mathcal{U}_i = \{ V \subseteq X_i \text{ open } | p_i^{-1}(V) \in \mathcal{U} \}.$$

For some *i*, the collection \mathcal{U}_i must cover X_i , since otherwise we could pick $x_i \in X_i$ for each *i* with x_i not in the union of \mathcal{U}_i . Then the element $(x_i) \in \prod X_i$ would not be in \mathcal{U} since it cannot be

in any $p_i^{-1}(V)$. Then \mathcal{U}_i cannot have a finite subcover, since that would provide a corresponding subcover of \mathcal{U} . It follows that X_i is not compact.

It remains to show that we can always reduce to the cover-by-subbasis case.

Consider the collection \mathcal{N} of open covers of X having no finite subcovers. By assumption, this set is nonempty, and we can partially order \mathcal{N} by inclusion of covers. Furthermore, if $\{\mathcal{U}_{\alpha}\}$ is a linearly order subset of \mathcal{N} , then $\mathcal{U} = \bigcup_{\alpha} \mathcal{U}_{\alpha}$ is an open cover, and it cannot have a finite subcover since a finite subcover of \mathcal{U} would be a finite subcover of one of the \mathcal{U}_{α} . Thus \mathcal{U} is an upper bound in \mathcal{N} for $\{\mathcal{U}_{\alpha}\}$. By Zorn's Lemma, \mathcal{N} has a maximal element \mathcal{V} .

Now let $S \subseteq V$ be the subcollection consisting of the subbasis elements in V. We claim that S covers X. Suppose not. Thus let $x \in X$ such that x is not covered by S. Then x must be in V for some $V \in V$. By the definition of the product topology, x must have a basic open neighborhood in $B \subset V$. But any basic open set is a finite intersection of subbasic open sets, so $B = S_1 \cap \ldots S_k$. If x is not covered by S, then none of the S_i are in S. Thus $V \cup \{S_i\}$ is not in \mathcal{N} by maximality of \mathcal{V} . In other words, $V \cup \{S_i\}$ has a finite subcover $\{V_{i,1}, \ldots, V_{i,n_i}, S_1\}$. Let us write

$$V_i = V_{i,1} \cup \cdots \cup V_{i,n_i}$$

Now

$$X = \bigcap_{i} \left(S_{i} \cup \hat{V}_{i} \right) \subseteq \left(\bigcap_{i} S_{i} \right) \cup \left(\bigcup_{i} \hat{V}_{i} \right) \subseteq V \cup \left(\bigcup_{i} \hat{V}_{i} \right)$$

This shows that \mathcal{V} has a finite subcover, which contradicts that $\mathcal{V} \in \mathcal{N}$. We thus conclude that \mathcal{S} covers X using only subbasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite subcover. This is a contradiction.

As we said already, Tychonoff's theorem is equivalent to the axiom of choice (which is equivalent to Zorn's Lemma).

Theorem 24.2. Tychonoff \Rightarrow axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let $X_i \neq \emptyset$ for all $i \in \mathcal{I}$. We want to show that $X = \prod X_i \neq \emptyset$.

For each *i*, define $Y_i = X_i \cup \{\infty_i\}$, where $\infty_i \notin X_i$. We topologize Y_i such that the only nontrivial open sets are X_i and $\{\infty_i\}$. Now for each *i*, let $U_i = p_i^{-1}(\infty_i)$. The collection $\mathcal{U} = \{U_i\}$ gives a collection of open subsets of $Y = \prod_i Y_i$, and this collection covers Y if and only if $X = \emptyset$. Each Y_i is compact since it has only four open sets. Thus Y must be compact by the Tychonoff theorem.

But no finite subcollection of \mathcal{U} can cover Y. For example, $U_i \cup U_j$ does not cover Y since $a \in X_i$ and $b \in X_j$, then we can define $(y_i) \in Y \setminus (U_i \cup U_j)$ by

$$y_k = \begin{cases} a & k = i \\ b & k = j \\ \infty_k & k \neq i, j \end{cases}$$

The same kind of argument will work for any finite collection of U_i 's. Since \mathcal{U} has no finite subcover and Y is compact, \mathcal{U} cannot cover Y, so that X must be nonempty.

25. Fri, Oct. 25

(Start with sketch proof of $S^1 \wedge S^1 \cong S^2$ from Homework V).

Closely related to compactness is the following notion.

Definition 25.1. We say that a space X is **sequentially compact** if every sequence in X has a convergent subsquence.

Example 25.2. The open interval (0, 1) is not sequentially compact because $\{1/n\}$ has no subsequence that converges in (0, 1). If we consider instead [0, 1], this example no longer works, and we will see that [0, 1] is indeed sequentially compact.

In general, there is no direct relation between compactness and sequential compactness.

Example 25.3. Consider $X = I^{I}$. By the Tychonoff theorem, X is compact. However, it is not sequentially compact. Let $f_n \in X$ be defined by $f_n(x) =$ the *n*th digit in the binary expansion of x. We claim that (f_n) has no convergent subsequence. Recall that convergence in X means *pointwise* convergence of functions. Let (f_{n_k}) be any subsequence. In order for this to converge, it the sequence $f_{n_k}(x)$ would need to converge for every x. This is simply a sequence of 0's and 1's, so it must be eventually constant. But no matter the subsequence f_{n_k} , we can find an $x \in I$ whose corresponding sequence of digits is not eventually constant.

Example 25.4. Let

$$X = \left\{ x \in \prod_{\mathbb{R}} \{0, 1\} \, \middle| \, x^{-1}(1) \text{ is countable.} \right\}$$

We here consider $\{0, 1\}$ with the discrete topology, and X is a subspace of the product. For each $r \in \mathbb{R}$, let $B_r = \{x \in X \mid x(r) = 0\}$. This is a subbasis element and so is open. Then the collection $\{B_r\}_{r\in\mathbb{R}}$ gives an open cover of X, but it clearly has no finite subcover.

Now let (x_n) be a sequence in X. Let

$$S = \bigcup_n x_n^{-1}(1)$$

S is a countable union of countable sets, so it is countable. Let $Y = \prod_{S} \{0, 1\}$, and let $q: X \longrightarrow Y$

be the restriction along $S \hookrightarrow \mathbb{R}$. Then $q(x_n)$ is a sequence in $Y = \{0,1\}^S$. It can be seen directly that Y is sequentially compact, so that some subsequence $q(x_{n_k})$ of $q(x_n)$ must converge to, say $y \in Y$. Let $z \in X$ be the function with $x^{-1}(1) = y^{-1}(1)$. But then x_{n_k} converges to z since each x_n is identically 0 on $\mathbb{R} \setminus S$.

We have shown that X is sequentially compact spaces but not compact.

Theorem 25.5. If X is a metric space, then X is compact if and only if it is sequentually compact.

Proof. See Munkres, Theorem 28.2 or Lee, Lemmas 4.42-4.44.

In \mathbb{R}^n , this result is known by the following name.

Theorem 25.6 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^n has a convergent subsequence.