23. Mon, Oct. 21

Like connectedness, compactness is preserved by continuous functions.

Proposition 23.1. Let f: X — Y be continuous, and assume that X is compact. Then f(X) is
compact.

Proof. Let V be an open cover of f(X). Then U = {f~1(V) | V € V} is an open cover of X. Let
{U1,...,Ux} be a finite subcover. It follows that the corresponding {V1, ..., Vi } is a finite subcover
of V. |

Example 23.2. Recall that we have the quotient map exp : [0,1] — S!. It follows that S! is
compact.

Theorem 23.3 (Extreme Value Theorem). Let f : [a,b] — R be continuous. Then f attains a
mazximum and a minimum.

Proof. Since f is continuous and [a,b] is both connected and compact, the same must be true of
its image. But the compact, connected subsets are precisely the closed intervals. |

The following result is also quite useful.

Proposition 23.4. Let X be Hausdorff and let A C X be a compact subset. Then A is closed in
X.

Proof. Pick any point z € X \ A (if we can’t, then A = X and we are done). For each a € A, we
have disjoint neighborhoods a € U, and = € V,. Since the U, cover A, we only need finitely many,
say Uq,,...,U,, to cover A. But then the intersection

V=Vy NNV,

of the corresponding V,’s is disjoint from the union of the U,’s and therefore also from A. Since
V is a finite intersection of open sets, it is open and thus gives a neighborhood of z in X \ A. It
follows that A is closed. |

Exercise 23.5. If A C X is closed and X is compact, then A is compact.
Combining these results gives the following long-awaited consequence.

Corollary 23.6. Let f: X — Y be continuous, where X is compact and Y is Hausdorff, then f
1 a closed map.

In particular, if f is already known to be a continuous bijection, then it is automatically a home-
omorphism. For example, this shows that the map I/0I — S! is a homeomorphism. Similarly,
from Homework 5 we have D" /9D™ = S™.

We will next show that finite products of compact spaces are compact, but we first need a lemma.

Lemma 23.7 (Tube Lemma). Let X be compact and Y be any space. If W C X XY is open and
contains X x {y}, then there is a neighborhood V of y with X x V. C W.

Proof. For each x € X, we can find a basic neighborhood U, x V,, of (z,y) in W. The U,’s give
an open cover of X, so we only need finitely many of them, say U,,,...,Us;,. Then we may take
V=V, n---NnV,,. [

Proposition 23.8. Let X and Y be nonempty. Then X XY is compact if and only if X and Y
are compact.
39



Proof. As for connectedness, the continuous projections make X and Y compact if X XY is compact.

Now suppose that X and Y are compact and let i/ be an open cover. For each y € Y, the cover
U of X xY certainly covers the slice X x {y}. This slice is homeomorphic to X and therefore
finitely-covered by some V C Y. By the Tube Lemma, there is a neighborhood V), of y such that
the tube X x V, is covered by the same V. Now the V,’s cover Y, so we only need finitely many
of these to cover X. Since each tube is finitely covered by U and we can cover X X Y by finitely
many tubes, it follows that U has a finite subcover. |

Theorem 23.9 (Heine-Borel). A subset A C R"™ is compact if and only if it is closed and bounded.

Proof. Suppose A is compact. Then A must be closed in R™ since R™ is Hausdorff. The subset A
must also be bounded according to Homework problem VL.5.

On the other hand, suppose that A is closed and bounded in R™. Since A is bounded, it is
contained in [—k, k] for some k& > 0. But this product of intervals is compact since each interval
is compact. Now A is a closed subset of a compact space, so it is compact. |

Again, we have shown that compactness interacts well with finite products, and we would like
a similar result in the arbitrary product case. This is a major theorem, known as the Tychonoff
theorem. First, we show the theorem does not hold with the box topology.

Example 23.10. Let D = [~1,1] and consider DY, equipped with the box topology. For each k,
let

U, =DVn ((—2’“,2’“) x (—2k=1 k=1 o )
So
Ur = [=1,1] % (=1, 1) % (=1/2,1/2) % (=1/4,1/4) x ...
and
Us = [-1,1] x [-1,1] x (=1,1) x (—1/2,1/2) x ...

Then U = {Uy} is an open cover with no finite subcover.

24. WED, OcT. 23

It turns out that the Tychonoff Theorem is equivalent to the axiom of choice. We will thus use
a form of the axiom of choice in order to prove it.

Zorn’s Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an
upper bound in P, then P contains at least one maximal element.

Theorem 24.1 (Tychonoff). Let X; # () for alli € Z. Then HXi is compact if and only if each

(2
X, is compact.
Proof. As we have seen a number of times, the implication (=) is trivial.
We now show the contrapositive of (<=). Thus assume that X = H X; is not compact. We wish

i
to conclude that one of the X; must be noncompact. By hypothesis, there exists an open cover U
of X with no finite subcover.
We first deal with the following case.

Special case: U is a cover by subbasis elements.
For each i € Z, let U; be the collection

U; ={V C X; open |p; (V) eU}.
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For some i, the collection U; must cover X;, since otherwise we could pick x; € X; for each i with
x; not in the union of U;. Then the element (z;) € HXi would not be in U since it cannot be

(2
in any p, 1(V). Then U; cannot have a finite subcover, since that would provide a corresponding
subcover of U. It follows that X; is not compact.

It remains to show that we can always reduce to the cover-by-subbasis case.

Consider the collection N of open covers of X having no finite subcovers. By assumption, this
set is nonempty, and we can partially order N by inclusion of covers. Furthermore, if {U,} is a
linearly order subset of N, then U = |J, Uy is an open cover, and it cannot have a finite subcover
since a finite subcover of U would be a finite subcover of one of the U,. Thus U is an upper bound
in NV for {U,}. By Zorn’s Lemma, N has a maximal element V.

Now let & C V be the subcollection consisting of the subbasis elements in V. We claim that S
covers X. Suppose not. Thus let x € X such that x is not covered by S. Then x must be in V for
some V' € V. By the definition of the product topology, x must have a basic open neighborhood in
B C V. But any basic open set is a finite intersection of subbasic open sets, so B =51 N...5S;. If
x is not covered by S, then none of the S; are in S. Thus V U {S;} is not in N by maximality of
V. In other words, V U {S;} has a finite subcover {V;1,...,Vip,, S1}. Let us write

V= ViaUs-U Vi,

Now
X:O(Siuf/i) C (OSJ U (L;JVZ> cCVu <L2JV1)

This shows that V has a finite subcover, which contradicts that V € N. We thus conclude that S
covers X using only subbasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite
subcover. This is a contradiction. |

As we said already, Tychonoff’s theorem is equivalent to the axiom of choice (which is equivalent
to Zorn’s Lemma).

Theorem 24.2. Tychonoff = axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let X; # ) for all i € 7.
We want to show that X = H X; # 0.

i
For each i, define Y; = X;U{00;}, where co; ¢ X;. We topologize Y; such that the only nontrivial
open sets are X; and {oo;}. Now for each i, let U; = p; '(c0;). The collection U = {U;} gives a

collection of open subsets of Y = H Y;, and this collection covers Y if and only if X = (). Each Y;

(2
is compact since it has only four open sets. Thus Y must be compact by the Tychonoff theorem.
But no finite subcollection of U can cover Y. For example, U; U U; does not cover Y since a € X;
and b € X;, then we can define (y;) € Y \ (U; UUj) by

a k=1
=9 b k=7
ook k#1,]
The same kind of argument will work for any finite collection of U;’s. Since U has no finite subcover
and Y is compact, U cannot cover Y, so that X must be nonempty. |
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25. Fri, Oct. 25
(Start with sketch proof of S A ST 22 52 from Homework V).

Closely related to compactness is the following notion.

Definition 25.1. We say that a space X is sequentially compact if every sequence in X has a
convergent subsquence.

Example 25.2. The open interval (0,1) is not sequentially compact because {1/n} has no subse-
quence that converges in (0, 1). If we consider instead [0, 1], this example no longer works, and we
will see that [0, 1] is indeed sequentially compact.

In general, there is no direct relation between compactness and sequential compactness.

Example 25.3. Consider X = I’. By the Tychonoff theorem, X is compact. However, it is not
sequentially compact. Let f, € X be defined by f,(z) = the nth digit in the binary expansion
of z. We claim that (f,) has no convergent subsequence. Recall that convergence in X means
pointwise convergence of functions. Let (fy, ) be any subsequence. In order for this to converge, it
the sequence f,, (z) would need to converge for every x. This is simply a sequence of 0’s and 1’s,
so it must be eventually constant. But no matter the subsequence fy,,, we can find an « € I whose
corresponding sequence of digits is not eventually constant.

Example 25.4. Let
X = {3: € H{O, 1}‘ z7 (1) is countable.}
R

We here consider {0,1} with the discrete topology, and X is a subspace of the product. For each
r € R, let B, = {x € X | x(r) = 0}. This is a subbasis element and so is open. Then the collection
{B,}rer gives an open cover of X, but it clearly has no finite subcover.

Now let (z,,) be a sequence in X. Let

S=Jz,'(1).

S is a countable union of countable sets, so it is countable. Let ¥ = H{O, 1},andlet ¢: X — Y
S
be the restriction along S < R. Then ¢(z,,) is a sequence in Y = {0,1}°. It can be seen directly
that Y is sequentially compact, so that some subsequence g(xy,) of ¢(x,) must converge to, say
y €Y. Let z € X be the function with x=*(1) = y~!(1). But then z,, converges to z since each
Zy, is identically 0 on R\ S.
We have shown that X is sequentially compact spaces but not compact.

Theorem 25.5. If X is a metric space, then X is compact if and only if it is sequentually compact.
Proof. See Munkres, Theorem 28.2 or Lee, Lemmas 4.42-4.44. |
In R™, this result is knwon by the following name.

Theorem 25.6 (Bolzano-Weierstrass). Fvery bounded sequence in R™ has a convergent subse-
quence.
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