Math 114 - Calculus II Tuesday, November 14 ** Quiz 5

С

SOLUTIONS

1. Determine whether the following series either converge absolutely (A), converge conditionally (C), or diverge (D). Make sure to state clearly what test(s) you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{2n^2 + 3n + 1}$$

We have

$$\lim_{n} \frac{n^2 + 1}{2n^2 + 3n + 1} = \frac{1}{2} \neq 0,$$

so the series diverges by the divergence test.

D

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

This is an alternating series. Since $\frac{1}{1+1} > \frac{1}{\sqrt{2}+1} > \frac{1}{\sqrt{3}+1} > \dots$ and since $\lim_{n} \frac{1}{\sqrt{n}+1} = 0$, we conclude that the series converges by the Alternating Series Test.

To see that it does not converge absolutely, we use a Limit Comparison Test, comparing the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$ to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. This second series diverges since $p = \frac{1}{2} \leq 1$.

$$\lim_{n} \frac{\frac{1}{\sqrt{n+1}}}{\frac{1}{\sqrt{n}}} = \lim_{n} \sqrt{\frac{n}{n+1}} = \sqrt{\lim_{n} \frac{n}{n+1}} = \sqrt{1} = 1.$$

Since this limit is > 0, it follows that our series behaves the same as the *p*-series. Since the *p*-series diverges, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$ also diverges. It follows that our original series converges conditionally.

A C D (circle one answer)
(c)
$$\sum_{n=2}^{\infty} (-1)^{n^2+1} \frac{5^n}{(n+1)!}$$

We use the Ratio Test.
 $5^{n+1}/(n+2)! = 5^{n+1} (n+1)!$

$$\lim_{n} \frac{5^{n+1}/(n+2)!}{5^n/(n+1)!} = \lim_{n} \frac{5^{n+1}}{5^n} \frac{(n+1)!}{(n+2)!} = \lim_{n} \frac{5}{n+2} = 0.$$

(CONTINUED ON BACK)

2. (a) Use the (Leibniz) Alternating Series Test to show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges. Make sure to check all of the hypotheses!

Let $a_n = \frac{1}{n^2}$. In order to apply the Alternating Series Test, we need to check that a_n is decreasing towards 0. We have $\lim_{n} \frac{1}{n^2} = 0$ as needed. To check that it is decreasing, we need to show that $\frac{1}{n^2} > \frac{1}{(n+1)^2}$. This is equivalent to showing that $(n+1)^2 > n^2$. But

$$(n+1)^2 = n^2 + 2n + 1 \ge n^2 + 1 > n^2$$

so we are done. Another way to do this would be to show that the derivative of $1/x^2$ is negative. It now follows from the Alternating Series Test that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges.

(b) How many terms are needed in order to guarantee that the partial sum will be within $\frac{1}{1000}$ of the infinite sum?

The Alternating Series Test further tells us that if $S = \sum_{n=1}^{\infty} (-1)^n a_n$ and $S_N = \sum_{n=1}^{N} (-1)^n a_n$ with all $a_n > 0$, then

$$|S - S_N| < a_{N+1}.$$

Since we want to make $|S - S_N|$ less than $\frac{1}{1000}$, it suffices to find an N such that $a_{N+1} < \frac{1}{1000}$. But $A_{N+1} = \frac{1}{(N+1)^2}$. Solving

$$\frac{1}{(N+1)^2} < \frac{1}{1000}$$

gives $N + 1 > \sqrt{1000} = 10\sqrt{10} \approx 31.6$. Thus we want $N + 1 \ge 32$ or $N \ge 31$.