Math 114 - Calculus 1I
Tuesday, November 14  **  Quiz 5 SOLUTIONS

1. Determine whether the following series either converge absolutely (A), converge conditionally
(C), or diverge (D). Make sure to state clearly what test(s) you are using.
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so the series diverges by the divergence test.
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we conclude that the series converges by the Alternating Series Test.
To see that it does not converge absolutely, we use a Limit Comparison Test, comparing
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Since this limit is > 0, it follows that our series behaves the same as the p-series.
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Since the p-series diverges, Z also diverges. It follows that our orignial series
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converges conditionally.
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We use the Ratio Test.
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Since this is less than 1, our series converges absolutely.
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2. (a) Use the (Leibniz) Alternating Series Test to show that the series Z )

converges.
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Make sure to check all of the hypotheses!
Let a,, = % In order to apply the Alternating Series Test, we need to check that a,, is

decreasing towards 0. We have lim — = 0 as needed. To check that it is decreasing, we
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need to show that 12 > This is equivalent to showing that (n + 1)* > n?. But
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so we are done. Another way to do this would be to show that the derivative of 1/x? is

(="

oo
negative. It now follows from the Alternating Series Test that Z converges.
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(b) How many terms are needed in order to guarantee that the partial sum will be within

o
1000 of the infinite sum?
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The Alternating Series Test further tells us that if S = Z(—l)”an and Sy = Z(—l)”an
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with all a,, > 0, then
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Since we want to make |S — Sy less than —— it suffices to find an N such that ay,; <

But Ay = . Solving
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gives N +1 > /1000 = 10/10 ~ 31.6. Thus we want N +1 > 32 or N > 31.




