Math 551 - Topology I Homework 2 Fall 2014

- 1. Let (X, d) be a metric space and consider $X \times X$, equipped with the max metric. Show that $d: X \times X \longrightarrow \mathbb{R}$ is continuous.
- 2. Let X, Y, and Z be metric spaces. Show that if $\widehat{\varphi}: X \longrightarrow \mathcal{C}(Y,Z)$ is continuous then $\varphi: X \times Y \longrightarrow Z$ is continuous. (The other implication is not always true.)
- 3. (a) (The cofinite topology) Let X be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is finite. Show that this defines a topology on X.
 - (b) (The cocountable topology) Let X be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is countable. Show that this defines a topology on X.
 - (c) In the case $X = \mathbb{R}$, how do these relate to each other and to the usual topology?
- 4. (a) (Generic point topology) Let X be a set, and fix a special point $x_0 \in X$. Declare a nonempty subset $U \subseteq X$ to be open in X if and only if $x_0 \in U$. Show that this gives a topology on X.
 - (b) (Excluded point topology) Let X be a set, and fix a special point $x_0 \in X$. Declare a proper subset $U \subset X$ to be open if and only if $x_0 \notin U$. Show that this gives a topology on X.
- 5. Show that if *Y* is a set equipped with the trivial topology and *X* is any space, then every function $f: X \longrightarrow Y$ is continuous.
- 6. (Vertical interval topology) Define \mathcal{B} to be the collection of vertical open intervals in \mathbb{R}^2 , namely, sets of the form

$${a} \times (b,c) = {(a,x) \mid b < x < c}$$

for fixed a, b, c. Show that this defines a basis for a topology on \mathbb{R}^2 . How is this topology related to the standard topology?