Math 551 - Topology I Homework 4 Fall 2014

- 1. Consider the topology on \mathbb{R} given by the subbasis consisting of open intervals (a, ∞) .
 - (a) Given a subset $A \subseteq \mathbb{R}$, describe the closure \overline{A} in this topology.
 - (b) Consider the sequence $x_n = n$. Does it converge? If so, to what?
 - (c) Show that the sequence lemma holds in this topology. That is, if $x \in \overline{A}$, then some sequence in *A* converges to *x*.

This is an example of a non-Hausdorff space in which the sequence lemma holds.

- 2. Consider the generic point topology on a set *X*, with generic point $p \in X$.
 - (a) To which point(s) in *X* does the constant sequence $x_n = p$ converge?
 - (b) Now let x_n be a sequence in X which avoids, p, that is, $x_n \neq p$ for all n. To which point(s) in X does x_n converge?
- 3. Let *X* be Hausdorff, let $A \subseteq X$, and let A' denote the set of accumulation points of *A*. Show that A' is closed in *X*.
- 4. (a) Show that for any two spaces *X* and *Y*, the projection map *p_X* : *X* × *Y* → *X* is *open*.
 (b) Find an example to show that the projection *p_X* need not be closed.
- 5. Show that a space *X* is Hausdorff if and only if the diagonal subset

$$\Delta(X) = \{(x, x)\} \subseteq X \times X$$

is closed.