Math 551 - Topology I Homework 9 Fall 2014

- 1. A map $f : X \longrightarrow Y$ is said to be **proper** if, for any compact subset $K \subseteq Y$, the preimage $f^{-1}(K) \subseteq X$ is compact.
 - (a) Show that if X is compact and Y is Hausdorff, then any continuous $f : X \longrightarrow Y$ is automatically proper.
 - (b) Let *X* and *Y* be locally compact and Hausdorff. Show that a continuous map $f : X \longrightarrow Y$ is proper if and only if it extends to a continuous map $\hat{f} : \hat{X} \longrightarrow \hat{Y}$ with $\hat{f}(\infty_X) = \infty_Y$.
- 2. Show that if *X* is normal and $A \subseteq X$ is closed, then *A* is normal.
- 3. Suppose that *X* is normal and connected. Show that if *X* contains more than one point, it must be uncountable. (Hint: Use the Urysohn Lemma.)