
26. Mon, Oct. 27

Closely related to compactness is the following notion.

Definition 26.1. We say that a space X is sequentially compact if every sequence in X has a
convergent subsquence.

Example 26.2. The open interval (0, 1) is not sequentially compact because {1/n} has no subse-
quence that converges in (0, 1). If we consider instead [0, 1], this example no longer works, and we
will see that [0, 1] is indeed sequentially compact.

In general, there is no direct relation between compactness and sequential compactness.

Example 26.3. Consider X =
Y

[0,1]

{0, 1} under the product topology. By the Tychono↵ theorem,

X is compact. However, it is not sequentially compact. Let f
n

2 X be defined by f
n

(x) = the
nth digit in the binary expansion of x. We claim that (f

n

) has no convergent subsequence. Recall
that convergence in X means pointwise convergence of functions. Let (f

n

k

) be any subsequence.
In order for this to converge, it the sequence f

n

k

(x) would need to converge for every x. This is
simply a sequence of 0’s and 1’s, so it must be eventually constant. But no matter the subsequence
f
n

k

, we can find an x 2 I whose corresponding sequence of digits is not eventually constant.

Example 26.4. Let

X =
n

x 2
Y

R
{0, 1}

�

�

�

x�1(1) is countable.
o

We here consider {0, 1} with the discrete topology, and X is a subspace of the product. For each
r 2 R, let B

r

= {x 2 X | x(r) = 0}. This is a prebasis element and so is open. Then the collection
{B

r

}
r2R gives an open cover of X, but it clearly has no finite subcover.

Now let (x
n

) be a sequence in X. Let

S =
[

n

x�1

n

(1).

S is a countable union of countable sets, so it is countable. Let Y =
Y

S

{0, 1}, and let q : X �! Y

be the restriction along S ,! R. Then q(x
n

) is a sequence in Y = {0, 1}S . It can be seen directly
that Y is sequentially compact, so that some subsequence q(x

n

k

) of q(x
n

) must converge to, say
y 2 Y . Let z 2 X be the function with x�1(1) = y�1(1). But then x

n

k

converges to z since each
x
n

is identically 0 on R \ S.
We have shown that X is sequentially compact space but not compact.

There is one more form of compactness.

Definition 26.5. A space is said to be limit point compact of every infinite subset has a limit
point (accumulation point).

Theorem 26.6. If X is a metric space, then X is compact if and only if it is sequentually compact
if and only if it is limit point compact.

Proof. See Munkres, Theorem 28.2 or Lee, Lemmas 4.42-4.44. ⌅
In Rn, this result is knwon by the following name.

Theorem 26.7 (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergent subse-
quence.
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We also saw that the compact subsets of the metric space Rn are the closed and bounded ones.
Do we have an analogue of this statement for an arbitrary metric space X? First, note that closed
and bounded is not enough in general to guarantee compactness, as any infinite discrete metric
space shows.

27. Wed, Oct. 29

We discussed the takehome exam today.

28. Fri, Oct. 31

Definition 28.1. We say that a metric space X is totally bounded if, for every ✏ > 0, there is
a finite covering of X by ✏-balls.

It is clear that compact implies totally bounded because, for any fixed ✏ > 0, the B
✏

give an
open covering. This su�ces to handle the discrete metric case, as a discrete metric space is totally
bounded () it is finite () it is compact. However, closed and totally bounded is still not
enough, as [0, 1]\Q is closed and totally bounded (either in Q or in itself) but not compact, as we
have already seen. Recall that a metric space is complete if every Cauchy sequence converges in
X.

Theorem 28.2. Let X be metric. Then X is compact () X is complete and totally bounded.

Proof. ()) We have already mentioned why compactness implies totally bounded. Let (x
n

) be a
Cauchy sequence in X. Then, since X is sequentially compact, a subsequence of (x

n

) converges.
But if x

n

k

! x, then we must also have x
n

! x since x
n

is Cauchy (prove this)! It follows that X
is complete.

(() Suppose now that X is complete and totally bounded. We show that X is sequentially
compact. Let (x

n

) be any sequence in X. Since X is complete, it su�ces to show that (x
n

) has a
subsequence that is Cauchy.

For each n, we have a finite covering of X by k
n

balls of radius 1/n. Start with n = 1. One of
these balls must contain infinitely many x

n

’s and so a subsequence of (x
n

). Now cover X by finitely
many balls of radius 1/2. Again, one of these contains a subsequence of the previous subsequence.
We continue in this way ad infinitum. We obtain the desired Cauchy subsequence as follows. First,
pick x

n1 to be in our original subsequence (in the chosen ball of radius 1). Then pick x
n2 to be in

the subsubsequence in our chosen ball of radius 1/2 (and pick it such that n
2

> n
1

. After (many,
many) choices, we get a subsequence of x

n

such that {x
n

k

}
k�m

is contained in a ball of radius 1/m.
It follows that x

n

k

is Cauchy. ⌅
Note that [0, 1] \Q is not complete, as the sequence

x
n

= the decimal expansion of 1/⇡ cut o↵ after the nth digit

is a Cauchy sequence in [0, 1] \Q which does not converge.

Definition 28.3. We say that a space is locally compact if every x 2 X has a compact neigh-
borhood (recall that we do not require neighborhoods to be open).

This looks di↵erent from our other “local” notions. To get a statement in the form we expect,
we introduce more terminology A ✓ X is precompact if A is compact.

Proposition 28.4. Let X be Hausdor↵. TFAE

(1) X is locally compact
(2) every x 2 X has a precompact neighborhood
(3) X has a basis of precompact open sets
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Proof. It is clear that (3) ) (2) ) (1) without the the Hausdor↵ assumption, so we show that
(1) ) (3). Suppose X is locally compact and Hausdor↵. Let V be open in X and let x 2 V . We
want a precompact open neighborhood of x in V . Since X is locally compact, we have a compact
neighborhood K of x, and since X is Hausdor↵, K must be closed. Since V and K are both
neighborhoods of x, so is V \K. Thus let x 2 U ✓ V \K. Then U ✓ K since K is closed, and U
is compact since it is a closed subset of a compact set. ⌅

In contrast to the local connectivity properties, it is clear that any compact space is locally
compact. But this is certainly a generalization of compactness, since any interval in R is locally
compact.

Example 28.5. A standard example of a space that is not locally compact is Q ✓ R. We show
that 0 does not have any compact neighborhoods . Let V be any neighborhood of 0. Then it must
contain (�⇡/n,⇡/n) for some n. Now

U =

(

✓

� ⇡/n,

✓

k

k + 1

◆

⇡/n

◆

)

[
n

V \ (⇡/n,1), V \ (�1,�⇡/n)
o

is an open cover of V with no finite subcover.

Remark 28.6. Why did we define local compactness in a di↵erent way from local (path)-
connectedness? We could have defined locally connected to mean that every point has a connected
neighborhood , which follows from the actual definition. But then we would not have that locally
connected is equivalent to having a basis of connected open sets. On the other hand, we could try
the x 2 K ✓ U version of locally compact, but of course we don’t want to allow K = {x}, so the
next thing to require is x 2 V ✓ U , where V is precompact. As we showed in Prop 28.4, this is
equivalent to our definition of locally compact in the presence of the Hausdor↵ condition. Without
the Hausdor↵ condition, compactness does not behave quite how we expect.
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