32. Mon, Nov. 10

Last time, we saw that a space is normal if and only if any two closed sets can be separated by
a continuous function (modulo the T condition). Here is another important application of normal
spaces.

Theorem 32.1 (Tietze extension theorem). Suppose X is normal and A C X is closed. Then any
continuous function f: A — [0,1] can be extended to a continuous function f : X — [0,1].

Again, this becomes an if and only if if we drop the Ti-condition from normal.

It is also easy to see that the result fails if we drop the hypothesis that A be closed. Consider X =
S1 and A is the complement of a point. Then we know that A = (0, 1), but this homeomorphism
cannot extend to a map St — (0, 1).

Sketch of proof. It is more convenient for the purpose of the proof to work with the interval [—1, 1]
rather than [0, 1]. Thus suppose f : A — [~1,1] is continuous. Then A; = f~([~1,-1/3]) and
B1 = f71([1/3,1]) are closed, disjoint subsets of A and therefore also of X. Since X is normal, we
have a Urysohn function g; : X — [—1/3,1/3] which separates A; and Bj. It is simple to check
that |f(a) — g1(a)| < 2/3 for all a € A. In other words, we have a map

f1 = f—91 A — [—2/3,2/3}.

Define Ay = f; 1([~2/3,—2/9]) and By = f; ([2/9,2/3]). We get a Urysohn function gg : X —
[—2/9,2/9] which separates Az and By. Then the difference fo = f — g1 — g2 maps to [—4/9,4/9].
We continue in this way, and in the end, we get a sequence of functions (g,) defined on X, and
we define g = ), gn. By construction, this agrees with f on A (the difference will be less than
(2/3)™ for all n). The work remains in showing that the series defining g converges (compare to a
geometric series) and that the resulting ¢ is continuous (show that the series converges uniformly).

See [Munkres, Thm 35.1] for more details. [ |
Theorem 32.2 (Stone-Cech compactification). Suppose X Yy
is normal. There exists a “universal” compactification t : . N
X — Y of X, such that if j : X — Z is any map to NN
a compact Hausdorf space (for example a compactification), X A

there is a unique map q: Y — Z with qot=j.
33. WED, Nov. 12
Proof. Given the space X, let F = { cts f: X — [0,1]}. Define
L X —[0,1)F

by «(x)¢ = f(x). This is continuous because each coordinate function is given by some f € F. The

infinite cube is compact Hausdorff, and we let Y = ¢(X). It remains to show that ¢ is an embedding
and also to demonstrate the universal property.

First, ¢ is injective by Urysohn’s lemma: given distinct points x and y in X, there is a Urysohn
function separating x and y, so t(z) # t(y).

Now suppose that U C X is open. We wish to show that +(U) is open in «(X). Pick zp € U.
Again by Urysohn’s lemma, we have a function g : X — [0, 1] with g(x¢) = 0 and g = 1 outside
of U. Let

B = {u(z) € X) | g(x) # 1} = «(X) Npy ([0, 1)).
Certainly ¢(x¢) € B. Finally, B C «(U) since if «(z) € B, then g(z) # 1. But g = 1 outside of U,
so x must be in U.
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For the universal property, suppose that j : X — Z is a map to a compact Hausdorff space.
Then Z is also normal, and the argument above shows that it embeds inside some large cube [0, 1]%.
For each k : Z — [0,1] in K, we thus get a coordinate map i = pyoj : X — [0,1], and it is
clear how to extend this to get a map g : Y — [0,1]: just take g to be the projection map p;,
onto the factor labelled by the map iz. Piecing these together gives a map ¢ : Y — [0, 1%, but it
restricts to the map j on the subset X. Since j has image in the closed subset Z, it follows that
q(Y) C Z since ¢ is continuous and ¢(X) is dense in Y. Note that ¢ is the unique extension of j to
Y since Z is Hausdorff and «(X) is dense in Y. [

Corollary 33.1. Suppose that X is normal, and that X — Z is any compactification. Then Z is
a quotient of the Stone-Cech compactification Y of X.

Proof. According to the Theorem 32.2, we have a continuous map ¢ : ¥ — Z whose restriction
to X is the given map j : X < Z. The map ¢ is closed since Y is compact and Z is Hausdorff.
Also, j(X) is dense in Z, and j(X) = q(¢(X)) C q(Y) so q(Y) = Z. In other words, ¢ is closed,
continuous, and surjective, therefore it is a quotient map. |

The Stone-Cech compactification has consequences for metrizability of a space. Consider first
the case that the index set .J is countable.

Proposition 33.2. Let Y be a metric space, and let d : Y x Y — R be the associated truncated
metric. Then the formula

d

D(y,z) = sup {(yn’ 2n) }
n

defines a metric on YN, and the induced topology is the product topology.

Proof. We leave as an exercise the verification that this is a metric. We check the statement about
the topology. For each n, let p, : YN — Y be evaluation in the nth place. This is continuous, as
given y € YN and € > 0, we let § = ¢/n. Then if D(y,z) < 6, it follows that

d(Yn, 2n
d(Yn, 2n) = nM <nD(y,z) <nd =e.
n

By the universal property of the product, we get a continuous bijection p : YN — H Y.
N
It remains to show that p is open. Thus let B C YN be an open ball, and let y € p(B) = B.
We want to find a basis element U in the product topology with y € U C B. For convenience, we
replace B by B(y) for small enough e. Take N large such that 1/N < e. Then define

N
U=(p " (Bely).
=1

Let z € YN, Recall that we have truncated our metric on Y at 1. Thus if n > N, we have that
d(Yn,zn)/n <1/n < 1/N < e. It follows that for any z € U, we have z € B.(x) as desired. [

34. Fri, Nov. 14

On the other hand, if .J is uncountable, then [0, 1]” need not be metric, as the following example
shows.

Example 34.1. The sequence lemma fails in RR. Let A C R be the subset consisting of functions
that zero at all but finitely many points. Let g be the constant function at 1. Then g € A, since if

U= () »z'(aib)

L1,y T
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is a neighborhood of g, then the function

f(x)—{ 1 ze{z,...,z1}

0 else

is in UNA. But no sequence in A can converge to g (recall that convergence in the product topology
means pointwise convergence). For suppose f, is a sequence in A. For each n, let Z, = supp(f,)
(the support is the set where f,, is nonzero). Then the set

Z:U%
n

is countable, and on the complement of Z, all f,’s are zero. So it follows that the same must be
true for any limit of f,. Thus the f,, cannot converge to g.

This finally leads to a characterization of those topological spaces which come from metric spaces.
Theorem 34.2. If X is normal and second countable, then it is metrizable.

Proof. Since X is normal, we can embed X as above inside a cube [0, 1]/ for some J. Above, we
took J to be the collection of all functions X — [0, 1].

To get a countable indexing set J, start with a countable basis B = {B,,} for X. For each pair
of indices n,m for which B,, C B, the Urysohn lemma gives us a function g, ,, vanishing on B,
and equal to 1 outside B,,. We take J = {gnm}. Going back to the proof of the Stone-Cech-
compactification, we needed, for any xy € X and xg € U, to be able to find a function vanishing at
xo but equal to 1 outside of U.

Take a basis element B, satisfying zg € B,, C U. Since X is normal, we can find an open set V'
with zp € V € V C B,,. Find a B, inside of V, and we are now done: namely, the function In.m
is what we were after. |

We now come back to a result that we previously put off.

Theorem 34.3. Suppose X is locally compact, Hausdorff, and second-countable. Then X is nor-
mal.

Proof. Given closed, disjoint subsets A and B, we want to separate them using disjoint open sets.

Consider first the case where A = {a} is a point. Writing V' = X \ B, we have a € V, and we
wish to find U with a € U - U C V. Since X is locally compact, Hallsdorff, we can consider the
one-point compactificaiton X. But now we have ¢ € V C X, and X is compact Hausdorff and
therefore normal. So we get the desired U. Note that the same argument does not work for a
general A, since we would not know that A is closed in X (unless A is compact). We have proved
that X is regular (73).

Now let A and B be general closed, disjoint subsets. For each a € A, we can find a basis element
U, withae U, CU, C X \ B. Since our basis is countable, we can enumerate all such U,’s to get
a countable cover {U,} of A which is disjoint from B. Similarly, we get a countable cover {V,,} of
B which is disjoint from A. But the U,,’s need not be disjoint from the Vj’s so we need to fix this.

Define new covers of A and B, respectively, as follows. For each n, define

Un=U\JV;, and Vo=Vo\|JT;
j=1 j=1
The U,’s still cover A because we have removed the V j, which were all disjoint from A. Similarly,

the 17n cover B. Moreover, ﬁn is disjoint from 17] because, assuming WLOG that n < j, the closure
of Uy, has been removed from V; in the formation of V;. [ |

Combining the previous results gives
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Corollary 34.4. Suppose X is locally compact, Hausdorff, and second-countable. Then X is
metrizable.
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