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42. Mon, DEec. 8

Last time, we were discussing CW complexes, and we considered two different CW struc-
tures on S™. We continue with more examples.
RP". Let’s start with RP?. Recall that one model for this space was as the quotient of D2,
where we imposed the relation £ ~ —z on the boundary. If we restrict our attention to the
boundary S', then the resulting quotient is RP!, which is again a circle. The quotient map
q:S' — S'is the map that winds twice around the circle. In complex coordinates, this
would be z — 22. The above says that we can represent RP? as the pushout

Sl L D2

4

St — RP?

If we build the 1-skeleton S! using a single O-cell and a single 1-cell, then RP? has a single
cell in dimensions < 2.

More generally, we can define RP" as a quotient of D™ by the relation z ~ —z on the
boundary S™~!. This quotient space of the boundary was our original definition of RP"~!,
It follows that we can describe RP™ as the pushout

Snfl 4 Dn

RP"~! — RP"

Thus RP" can be built as a CW complex with a single cell in each dimension < n.
CP". Recall that CP' = S2. We can think of this as having a single O-cell and a single
2-cell. We defined CP? as the quotient of S® by an action of S! (thought of as U(1)). Let
n: 83 — CP! be the quotient map. What space do we get by attaching a 4-cell to CP*
by the map n? Well, the map 7 is a quotient, so the pushout CP! Uy D% is a quotient of D4
by the S'-action on the boundary.

Now include D* into S® C C? via the map

30(1E1,$2,$3,$4) — ($1,$2,$3,$4, \/ 1- Z$3,0)

(This would be a hemi-equator.) We have the diagonal U(1) action on S°. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ¢ meets
every S'-orbit in S®, and this inclusion induces a homeomorphism on orbit spaces

D*/U(1) = 8°/U(1) = CP?.

We have shown that CP? has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CP" can be built as a CW complex
having a cell in each even dimension.

43. WEDNESDAY, DEc. 10

(Torus) In general, a product of two CW complexes becomes a CW complex. We will
describe this in the case S' x S, where S! is built using a single 0-cell and single 1-cell.
Start with a single O-cell, and attach two 1-cells. This gives SV S'. Now attach a single
2-cell to the 1-skeleton via the attaching map v defined as follows. Let us refer to the two
circles in S' Vv S! as ¢ and 7. We then specify ¢ : S — St v S by ré~'r~1. What
we mean is to trace out £ on the first quarter of the domain, to trace out r on the second
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quarter, to run £ in reverse on the third quarter, and finally to run r in reverse on the final
quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map
Y St — SV 8t is surjective, so is tp2 : D> — X. Even better, it is a quotient map.
On the other hand, we also have a quotient map I? — 72, and using the homeomorphism
I? = D? from before, we can see that the quotient relation in the two cases agrees. We
say that this homeomorphism 72 22 X puts a cell structure on the torus. There is a single
0-cell (a vertex), two 1-cells (the two circles in S' Vv S1), and a single 2-cell.

Let’s talk about some of the (nice!) topological properties of CW complexes.

Lemma 43.1. Let £ = {e;"} be the set of all cells in X. Then X is a quotient of HD"L In

E
particular, A C X is open (or closed) if and only if, for each cell i and corresponding characteristic

map ®; : D" — X, the preimage ®; *(A) is open (or closed) in D™.

Proof. The forward implication is clear by continuity of the ;. For the other direction, suppose
that each <I>;1(A) is open. Then AN XY is open in XY, since X¥ is just the disjoint union of its
cells. Now assume by induction that A N X"~ ! is open in X"~ !. But, by the construction of the
pushout, the n-skeleton X" is a quotient of X"~ II J[]D™. Since AN X" pulls back to an open
set in each piece of this coproduct, it must be open in A N X™ by the definition of the quotient
topology. Now, since AN X" is open in X" for all n, A is open in X by property W. |

Theorem 43.2. Any CW complex X is normal.

Proof. First, X is 17 by the Lemma since any point obviously pulls back to a closed subset of
every D!'. Let A and B be disjoint closed sets in X. We will show that X is normal by building a
Urysohn function f: X — [0,1] with f(A) =0 and f(B) = 1. Because X satisfies property W,
a function f defined on X is continuous if and only if its restriction to each X" is continuous. We
thus build the function f by building its restrictions f” to X™.
On X9 we define
0 zeAnX’
ff2)=< 1 zeBnX°
1/2 else.

Since X0 is discrete, this is automatically continuous.
Now assume by induction that we have f*~! : X"~! — [0, 1] continuous with f*~}(ANX""1) =
0 and f*~1(B N X" 1) =1. Since we have a pushout diagram

H Snfl H pDn

L

xn—1 X",

by the universal property of the pushout, to define f™ on X", we need only specify a compatible
pair of functions on X™~! and on the disjoint union. On X"~ !, we take f*~!. To define a map out

of H D", it is enough to define a map on each D™.
For each n-cell ¢!, define W; C D™ closed by W; = D" U ®; 1(AN X™)U®; (BN X"). Define
g:W; —[0,1] by
[ Helx)) z€oD”
glx)=1< 0 zed (AN X"
1 € ® Y (BNX").
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We know that D" is compact Hausdorff (or metric) and thus normal. Thus, by the Tietze extneion
theorem (32.1) there is a Urysohn function for the disjoint closed sets ®; ' (ANX") and ®; ' (BNX™)
whose restriction to D™ agrees with f"~1o¢;. Putting all of this together gives a Urysohn function
on X" for the AN X™ and BN X™. By induction, we are done. |

44. Fri, DEC. 12
Even better,
Theorem 44.1 (Lee, Theorem 5.22). Every CW complex is paracompact.
Proposition 44.2. Any CW complex X is locally path-connected.

Proof. Let x € X and let U be any open neighborhood of z. We want to find a path-connected
neighborhood V of z in U. Recall that a subset V' C X is open if and only if V N X" is open for all
n. We will define V' by specifying open subsets V" C X" with V"*1 0 X" = V" and then setting
V=uvm

Suppose that x is contained in the cell ef'. We set VE = for k < n. We specify V;, by defining
<I>;1(V”) for each n-cell e]. If j # i, we set ‘b;l(Vn) = (). We define ®; '(V;,) to be an open

n-disc around ®; '(x) whose closure is contained in ®;'(U). Now suppose we have defined V*

for some k > n. Again, we define V¥+1 by defining each ®;(V**1). By assumption, ®; *(V*) C
oDk C <I>;1(U). By the Tube lemma, there is an € > 0 such that (using radial coordinates)
;7 (VF) x (1 —¢,1] € U. We define

O (VEH) = 71 (V) x [1,1 - ¢/2),

which is path-connected by induction. This also guarantees that VE+1 ¢ U N X 1 allowing the
induction to proceed. |

Proposition 44.3 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely many
cells.

Proof. For each cell e; meeting K, pick a point k; € K Ne;. Let S = {k;}. We use proprety W to
show that S is closed in X. It is clear that S N X is closed in X since X is discrete. Assume
that SN X" is closed in X" . Now in X", the set S N X" is the union of the closed subset
SN X"! and the points k; that lie in open n-cells. By Lemma 43.1, this set of k; is closed as well.

The argument above in fact shows that any subset of S is closed, so that S is discrete. But S is
closed in K, so S is compact. Since S is both discrete and compact, it must be finite. |

Corollary 44.4. Any CW complex has the closure-finite property, meaning that the closure of any
cell meets finitely many cells.

Proof. The closure of e; is ®;(D;"*), which is compact. The result follows from the proposition. W

Corollary 44.5.
(i) A CW complex X is compact if and only if it has finitely many cells.
(ii) A CW complex X is locally compact if and only if the collection £ of cells is locally finite.

We have talked recently about two good families of spaces, CW complexes and manifolds. How
are they related? A CW complex is a much more general kind of space. For instance, S'V S! has a
perfectly good CW structure with a single 0-cell and two 1-cells, but it is not a manifold since the
basepoint does not have a Euclidean neighborhood. On the other hand, most manifolds do admit
CW decompositions.

Theorem 44.6 (Lee, 5.25). Every 1-manifold admits a (nice) CW decomposition.
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Theorem 44.7 (Lee, 5.36, 5.37). Every n-manifold admits a (nice) CW decomposition for n = 2,3.

According to p. 529 of Allen Hatcher’s Algebraic Topology book, it is an open question whether
or not every 4-manifold admits a CW decomposition. But n-manifolds for n > 5 do always admit
a CW decomposition.

Another important problem, back purely in the realm of manifolds, is to try to list all manifolds
of a given dimension.

Theorem 44.8 (Classification of 1-manifolds). Every nonempty, connected 1-manifold M is home-
omorphic to S if it is compact and to R if it is noncompact.

For this theorem, it will be convenient to work with nice CW structures.

Definition 44.9. If X is a space with a CW structure, we say that an n-cell e’ is regular if the
characteristic map ®; : D" — €; C X is a homeomorphism onto its image. We say that a CW
complex is regular if every cell is regular.

Proof. The first step is to show that every 1-manifold has a regular CW decomposition. The main
idea is to cover M by a countable collection {U,} of regular charts (each closure U, in M should
be homeomorphic to [0,1]). Then, using induction, it is possible to put a regular CW structure
on Uy, = Uy, Ux in such a way that U, C Up41 is the inclusion of a subcomplex. (See Lee 5.25
for more details.) Clearly, each 1-cell bounds two 0O-cells, since the 1-cell is assumed to be regular.
Somewhat less clear is the fact that each O-cell is in the boundary of two 1-cells (see Lee 5.26).

We enumerate the 0-cells (aka vertices) and 1-cells (aka edges) in the following way. First, pick
some 0-cell, and call it vy. Pick an edge ending at vy, and call this ey. The other endpoint of eg
we call v;. The other edge ending at v; is called e;. We can continue in this way to get vo,vs, ...
and ez, e3,.... Now there is also another edge ending at vy, which should be called e_;. Let v_;
be the other endpoint. We can continue to get v_s,v_3,... and e_9,e_3,....

There are two cases to consider:

Case 1: The vertices v;, ¢ € Z are all distinct. Then for each n € Z, we have an embedding

[n,m+ 1] = [-1,1] Zn, el. These glue together to give a continuous map f : R — X. Our
assumption means that f is injective when restricted to Z. We can then see it is globally injective
since its restriction to any (n,n + 1) is a characteristic map for a cell (thus injective) and all cells
are disjoint.

Next, we show that f is open. Any open subset of (n,n + 1) is taken by f to an open subset
of M, since the top-dimension cells are always open in a CW complex. It remains to show that
f takes intervals of the form (n — ¢,n + €) to open subsets of M. By taking e small enough, we
can ensure that this image is contained in (the closure of) two 1-cells. We can then see that this
subset of M is open by pulling back along the characteristic maps (pulling back along these two
characteristic maps will give half-open intervals in D).

Since M is connected, in order to show that f is surjective, it now suffices to show that f(R)
is closed. Let x ¢ f(R). If = lies in a 1-cell e, then e is a neighborhood of = disjoint from f(R).
The other possibility is that x is a 0-cell. But then x must be the endpoint of two closed 1-cells €
and €. Neither e nor ¢’ can be in f(R) since this would imply that z also lies in f(R). But then
eU{z} Ue¢ is a neighborhood of z disjoint from f(R).

We have shown that f: R — M is an open, continuous bijection. So it is a homeomorphism.

Case 2: For some n € Z and k > 0, we have v, = vp+. We may then pick n and & so that

k is minimal. Then the vertices vy, ...,v,1,_1 are distinct, as are the edges ey, ..., ep1—1. This

implies that the restriction of f to [n,n + k) is injective. If we consider the restriction only to the

closed interval [n,n + k], then we get a closed map, since the domain is compact and the target is
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Hausdorff. We claim also that f([n,n+k]) is open in M. Indeed, if we pick any = € [n, n+ k] which
lies in an interval (7,7 + 1), then the open 1-cell e; is a neighborhood of f(x) that is contained in
the image of f. If we consider any interior integer n < i < n + k, then e¢;_1 U {v;} Ue; is an open
neighborhood in the image of f. Finally, e, U {n}e, r_1 is a neighborhood of f(n) = f(n + k) in
M.

Since the image f([n,n + k]) is both closed and open in M and M is connected, we conclude
that f([n,n+k]) = M. Since f(n) = f(n+ k), we get an induced map

filnn+k)/~=28' — M
which is a bijection. Since S! is compact and M is Hausdorff, this is a homeomorphism. |

We previously also briefly mentioned the idea of a “manifold with boundary”. There is a similar
result:

Theorem 44.10. Every nonempty, connected 1-manifold with boundary is homeomorphic to [0, 1]
if it is compact and to [0,1) if it is noncompact.

Next semester, we will similarly classify all compact 2-manifolds (the list of answers will be a
little longer).

A closely related idea to CW complex is the notion of simplicial complex. A simplicial complex
is built out of “simplices”. By definition, an n-simplex is the convex hull of n + 1 “affinely
independent” points in R¥, for k > n 4+ 1. This means that after translating this set so that one
point moves to the origin, the resulting collection of points is linearly independent.

There is a standard n-simplex A™ C R"*! defined by

A" = {(to, ., tn) ER™[ Y "t =1, > 0}.

In general, if o is an n-simplex generated by {to,...t,}, then the convex hull of any subset is
called a face of the simplex. A (Euclidean) simplicial complex is then a subset of R¥ that is a
union of simplices such that any two overlapping simplices meet in a face of each. We also usually
require the collection of simplices to be locally finite.

Since an n-simplex is homeomorphic to D", it can be seen that a simplicial complex is a regular
CW complex. A decomposition of a manifold as a simplicial complex is known as a triangulation
of the manifold. Just as one can ask about CW structures on manifolds, one can also ask about
triangulations for manifolds.

Theorem 44.11. (1) Every 1-manifold is triangulable (indeed, we know the complete list of

connected 1-manifolds).

(2) Tibor Radé proved in 1925 that every 2-manifold is triangulable.

(3) Edwin Moise proved in the 1950s that every 3-manifold is triangulable.

(4) Michael Freedman discovered the 4-dimensional Eg-manifold in 1982, which is not triangu-
lable.

(5) Ciprian Manolescu showed in March 2013 that manifolds in dimension > 5 are not trian-
gulable.
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