
42. Mon, Dec. 8

Last time, we were discussing CW complexes, and we considered two di↵erent CW struc-
tures on Sn. We continue with more examples.

(2) RPn. Let’s start with RP2. Recall that one model for this space was as the quotient of D2,
where we imposed the relation x ⇠ �x on the boundary. If we restrict our attention to the
boundary S1, then the resulting quotient is RP1, which is again a circle. The quotient map
q : S1 �! S1 is the map that winds twice around the circle. In complex coordinates, this
would be z 7! z2. The above says that we can represent RP2 as the pushout

S1

◆ //

q

✏✏✏✏

D2

✏✏✏✏

S1 // RP2

If we build the 1-skeleton S1 using a single 0-cell and a single 1-cell, then RP2 has a single
cell in dimensions  2.

More generally, we can define RPn as a quotient of Dn by the relation x ⇠ �x on the
boundary Sn�1. This quotient space of the boundary was our original definition of RPn�1.
It follows that we can describe RPn as the pushout

Sn�1

◆ //

q

✏✏✏✏

Dn

✏✏✏✏
RPn�1 // RPn

Thus RPn can be built as a CW complex with a single cell in each dimension  n.
(3) CPn. Recall that CP1 ⇠= S2. We can think of this as having a single 0-cell and a single

2-cell. We defined CP2 as the quotient of S3 by an action of S1 (thought of as U(1)). Let
⌘ : S3 �! CP1 be the quotient map. What space do we get by attaching a 4-cell to CP1

by the map ⌘? Well, the map ⌘ is a quotient, so the pushout CP1 [
⌘

D4 is a quotient of D4

by the S1-action on the boundary.
Now include D4 into S5 ✓ C3 via the map

'(x
1

, x
2

, x
3

, x
4

) = (x
1

, x
2

, x
3

, x
4

,
q

1�
X

x2
i

, 0).

(This would be a hemi-equator.) We have the diagonal U(1) action on S5. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ' meets
every S1-orbit in S5, and this inclusion induces a homeomorphism on orbit spaces

D4/U(1) ⇠= S5/U(1) = CP2.

We have shown that CP2 has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CPn can be built as a CW complex

having a cell in each even dimension.

43. Wednesday, Dec. 10

(4) (Torus) In general, a product of two CW complexes becomes a CW complex. We will
describe this in the case S1 ⇥ S1, where S1 is built using a single 0-cell and single 1-cell.

Start with a single 0-cell, and attach two 1-cells. This gives S1_S1. Now attach a single
2-cell to the 1-skeleton via the attaching map  defined as follows. Let us refer to the two
circles in S1 _ S1 as ` and r. We then specify  : S1 �! S1 _ S1 by `r`�1r�1. What
we mean is to trace out ` on the first quarter of the domain, to trace out r on the second
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quarter, to run ` in reverse on the third quarter, and finally to run r in reverse on the final
quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map
 : S1 �! S1 _ S1 is surjective, so is ◆

D

2 : D2 �! X. Even better, it is a quotient map.
On the other hand, we also have a quotient map I2 �! T 2, and using the homeomorphism
I2 ⇠= D2 from before, we can see that the quotient relation in the two cases agrees. We
say that this homeomorphism T 2 ⇠= X puts a cell structure on the torus. There is a single
0-cell (a vertex), two 1-cells (the two circles in S1 _ S1), and a single 2-cell.

Let’s talk about some of the (nice!) topological properties of CW complexes.

Lemma 43.1. Let E = {eni

i

} be the set of all cells in X. Then X is a quotient of
a

E
Dn

i. In

particular, A ✓ X is open (or closed) if and only if, for each cell i and corresponding characteristic
map �

i

: Dn

i �! X, the preimage ��1

i

(A) is open (or closed) in Dn

i.

Proof. The forward implication is clear by continuity of the '
i

. For the other direction, suppose
that each ��1

i

(A) is open. Then A \ X0 is open in X0, since X0 is just the disjoint union of its
cells. Now assume by induction that A \Xn�1 is open in Xn�1. But, by the construction of the
pushout, the n-skeleton Xn is a quotient of Xn�1 q

`

Dn. Since A \ Xn pulls back to an open
set in each piece of this coproduct, it must be open in A \ Xn by the definition of the quotient
topology. Now, since A \Xn is open in Xn for all n, A is open in X by property W. ⌅
Theorem 43.2. Any CW complex X is normal.

Proof. First, X is T
1

by the Lemma since any point obviously pulls back to a closed subset of
every Dn

i

. Let A and B be disjoint closed sets in X. We will show that X is normal by building a
Urysohn function f : X �! [0, 1] with f(A) ⌘ 0 and f(B) ⌘ 1. Because X satisfies property W,
a function f defined on X is continuous if and only if its restriction to each Xn is continuous. We
thus build the function f by building its restrictions fn to Xn.

On X0, we define

f0(x) =

8

<

:

0 x 2 A \X0

1 x 2 B \X0

1/2 else.

Since X0 is discrete, this is automatically continuous.
Now assume by induction that we have fn�1 : Xn�1 �! [0, 1] continuous with fn�1(A\Xn�1) ⌘

0 and fn�1(B \Xn�1) ⌘ 1. Since we have a pushout diagram
`

Sn�1

✏✏

//
`

Dn

✏✏
Xn�1 // Xn,

by the universal property of the pushout, to define fn on Xn, we need only specify a compatible
pair of functions on Xn�1 and on the disjoint union. On Xn�1, we take fn�1. To define a map out

of
a

Dn, it is enough to define a map on each Dn.

For each n-cell ei, define W
i

✓ Dn closed by W
i

= @Dn [ ��1

i

(A \Xn) [ ��1

i

(B \Xn). Define
g : W

i

�! [0, 1] by

g(x) =

8

<

:

fn�1('(x)) x 2 @Dn

0 x 2 ��1

i

(A \Xn)
1 x 2 ��1

i

(B \Xn).
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We know that Dn is compact Hausdor↵ (or metric) and thus normal. Thus, by the Tietze extneion
theorem (32.1) there is a Urysohn function for the disjoint closed sets ��1

i

(A\Xn) and ��1

i

(B\Xn)
whose restriction to @Dn agrees with fn�1�'

i

. Putting all of this together gives a Urysohn function
on Xn for the A \Xn and B \Xn. By induction, we are done. ⌅

44. Fri, Dec. 12

Even better,

Theorem 44.1 (Lee, Theorem 5.22). Every CW complex is paracompact.

Proposition 44.2. Any CW complex X is locally path-connected.

Proof. Let x 2 X and let U be any open neighborhood of x. We want to find a path-connected
neighborhood V of x in U . Recall that a subset V ✓ X is open if and only if V \Xn is open for all
n. We will define V by specifying open subsets V n ✓ Xn with V n+1 \Xn = V n and then setting
V = [V n.

Suppose that x is contained in the cell en
i

. We set V k = ; for k < n. We specify V
n

by defining
��1

j

(V n) for each n-cell en
j

. If j 6= i, we set ��1

j

(V
n

) = ;. We define ��1

i

(V
n

) to be an open

n-disc around ��1

i

(x) whose closure is contained in ��1

i

(U). Now suppose we have defined V k

for some k � n. Again, we define V k+1 by defining each ��1

i

(V k+1). By assumption, ��1

i

(V k) ✓
@Dk+1 ✓ ��1

i

(U). By the Tube lemma, there is an ✏ > 0 such that (using radial coordinates)
��1

i

(V k)⇥ (1� ✏, 1] ⇢ U . We define

��1

i

(V k+1) = ��1

i

(V k)⇥ [1, 1� ✏/2),

which is path-connected by induction. This also guarantees that V k+1 ⇢ U \Xk+1, allowing the
induction to proceed. ⌅
Proposition 44.3 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely many
cells.

Proof. For each cell e
i

meeting K, pick a point k
i

2 K \ e
i

. Let S = {k
i

}. We use proprety W to
show that S is closed in X. It is clear that S \ X0 is closed in X0 since X0 is discrete. Assume
that S \ Xn�1 is closed in Xn�1. Now in Xn, the set S \ Xn is the union of the closed subset
S \Xn�1 and the points k

i

that lie in open n-cells. By Lemma 43.1, this set of k
i

is closed as well.
The argument above in fact shows that any subset of S is closed, so that S is discrete. But S is

closed in K, so S is compact. Since S is both discrete and compact, it must be finite. ⌅
Corollary 44.4. Any CW complex has the closure-finite property, meaning that the closure of any
cell meets finitely many cells.

Proof. The closure of e
i

is �
i

(Dn

i

i

), which is compact. The result follows from the proposition. ⌅
Corollary 44.5.

(i) A CW complex X is compact if and only if it has finitely many cells.
(ii) A CW complex X is locally compact if and only if the collection E of cells is locally finite.

We have talked recently about two good families of spaces, CW complexes and manifolds. How
are they related? A CW complex is a much more general kind of space. For instance, S1_S1 has a
perfectly good CW structure with a single 0-cell and two 1-cells, but it is not a manifold since the
basepoint does not have a Euclidean neighborhood. On the other hand, most manifolds do admit
CW decompositions.

Theorem 44.6 (Lee, 5.25). Every 1-manifold admits a (nice) CW decomposition.
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Theorem 44.7 (Lee, 5.36, 5.37). Every n-manifold admits a (nice) CW decomposition for n = 2, 3.

According to p. 529 of Allen Hatcher’s Algebraic Topology book, it is an open question whether
or not every 4-manifold admits a CW decomposition. But n-manifolds for n � 5 do always admit
a CW decomposition.

Another important problem, back purely in the realm of manifolds, is to try to list all manifolds
of a given dimension.

Theorem 44.8 (Classification of 1-manifolds). Every nonempty, connected 1-manifold M is home-
omorphic to S1 if it is compact and to R if it is noncompact.

For this theorem, it will be convenient to work with nice CW structures.

Definition 44.9. If X is a space with a CW structure, we say that an n-cell en
i

is regular if the
characteristic map �

i

: Dn �! e
i

⇢ X is a homeomorphism onto its image. We say that a CW
complex is regular if every cell is regular.

Proof. The first step is to show that every 1-manifold has a regular CW decomposition. The main
idea is to cover M by a countable collection {U

n

} of regular charts (each closure U
n

in M should
be homeomorphic to [0, 1]). Then, using induction, it is possible to put a regular CW structure
on U

n

=
S

n

k=1

U
k

in such a way that U
n

✓ U
n+1

is the inclusion of a subcomplex. (See Lee 5.25
for more details.) Clearly, each 1-cell bounds two 0-cells, since the 1-cell is assumed to be regular.
Somewhat less clear is the fact that each 0-cell is in the boundary of two 1-cells (see Lee 5.26).

We enumerate the 0-cells (aka vertices) and 1-cells (aka edges) in the following way. First, pick
some 0-cell, and call it v

0

. Pick an edge ending at v
0

, and call this e
0

. The other endpoint of e
0

we call v
1

. The other edge ending at v
1

is called e
1

. We can continue in this way to get v
2

, v
3

, . . .
and e

2

, e
3

, . . . . Now there is also another edge ending at v
0

, which should be called e�1

. Let v�1

be the other endpoint. We can continue to get v�2

, v�3

, . . . and e�2

, e�3

, . . . .
There are two cases to consider:

Case 1: The vertices v
i

, i 2 Z are all distinct. Then for each n 2 Z, we have an embedding

[n, n + 1] ⇠= [�1, 1]
�

n��! e1
n

. These glue together to give a continuous map f : R �! X. Our
assumption means that f is injective when restricted to Z. We can then see it is globally injective
since its restriction to any (n, n+ 1) is a characteristic map for a cell (thus injective) and all cells
are disjoint.

Next, we show that f is open. Any open subset of (n, n + 1) is taken by f to an open subset
of M , since the top-dimension cells are always open in a CW complex. It remains to show that
f takes intervals of the form (n � ✏, n + ✏) to open subsets of M . By taking ✏ small enough, we
can ensure that this image is contained in (the closure of) two 1-cells. We can then see that this
subset of M is open by pulling back along the characteristic maps (pulling back along these two
characteristic maps will give half-open intervals in D1).

Since M is connected, in order to show that f is surjective, it now su�ces to show that f(R)
is closed. Let x /2 f(R). If x lies in a 1-cell e, then e is a neighborhood of x disjoint from f(R).
The other possibility is that x is a 0-cell. But then x must be the endpoint of two closed 1-cells e
and e0. Neither e nor e0 can be in f(R) since this would imply that x also lies in f(R). But then
e [ {x} [ e0 is a neighborhood of x disjoint from f(R).

We have shown that f : R �! M is an open, continuous bijection. So it is a homeomorphism.

Case 2: For some n 2 Z and k > 0, we have v
n

= v
n+k

. We may then pick n and k so that
k is minimal. Then the vertices v

n

, . . . , v
n+k�1

are distinct, as are the edges e
n

, . . . , e
n+k�1

. This
implies that the restriction of f to [n, n+ k) is injective. If we consider the restriction only to the
closed interval [n, n+ k], then we get a closed map, since the domain is compact and the target is
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Hausdor↵. We claim also that f([n, n+k]) is open in M . Indeed, if we pick any x 2 [n, n+k] which
lies in an interval (i, i + 1), then the open 1-cell e

i

is a neighborhood of f(x) that is contained in
the image of f . If we consider any interior integer n < i < n + k, then e

i�1

[ {v
i

} [ e
i

is an open
neighborhood in the image of f . Finally, e

n

[ {n}e
n+k�1

is a neighborhood of f(n) = f(n+ k) in
M .

Since the image f([n, n + k]) is both closed and open in M and M is connected, we conclude
that f([n, n+ k]) = M . Since f(n) = f(n+ k), we get an induced map

f : [n, n+ k]/⇠ ⇠= S1 �! M

which is a bijection. Since S1 is compact and M is Hausdor↵, this is a homeomorphism. ⌅
We previously also briefly mentioned the idea of a “manifold with boundary”. There is a similar

result:

Theorem 44.10. Every nonempty, connected 1-manifold with boundary is homeomorphic to [0, 1]
if it is compact and to [0, 1) if it is noncompact.

Next semester, we will similarly classify all compact 2-manifolds (the list of answers will be a
little longer).

A closely related idea to CW complex is the notion of simplicial complex. A simplicial complex
is built out of “simplices”. By definition, an n-simplex is the convex hull of n + 1 “a�nely
independent” points in Rk, for k � n + 1. This means that after translating this set so that one
point moves to the origin, the resulting collection of points is linearly independent.

There is a standard n-simplex �n ✓ Rn+1 defined by

�n = {(t
0

, . . . , t
n

) 2 Rn+1 |
X

t
i

= 1, t
i

� 0}.

In general, if � is an n-simplex generated by {t
0

, . . . t
n

}, then the convex hull of any subset is
called a face of the simplex. A (Euclidean) simplicial complex is then a subset of Rk that is a
union of simplices such that any two overlapping simplices meet in a face of each. We also usually
require the collection of simplices to be locally finite.

Since an n-simplex is homeomorphic to Dn, it can be seen that a simplicial complex is a regular
CW complex. A decomposition of a manifold as a simplicial complex is known as a triangulation
of the manifold. Just as one can ask about CW structures on manifolds, one can also ask about
triangulations for manifolds.

Theorem 44.11. (1) Every 1-manifold is triangulable (indeed, we know the complete list of
connected 1-manifolds).

(2) Tibor Radó proved in 1925 that every 2-manifold is triangulable.
(3) Edwin Moise proved in the 1950s that every 3-manifold is triangulable.
(4) Michael Freedman discovered the 4-dimensional E

8

-manifold in 1982, which is not triangu-
lable.

(5) Ciprian Manolescu showed in March 2013 that manifolds in dimension � 5 are not trian-
gulable.
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