
8. Mon, Sept. 15

Last time, we saw that if (a
n

) is a sequence in A ✓ X and a
n

! x, then x 2 A. But the converse
is not true in a general topological space. (The fact that these are equivalent in a metric space is
known as the sequence lemma.) To see this, consider R equipped with the cocountable topology.
Recall that this means that the nonempty open subsets are the cocountable ones.

Lemma 8.1. Suppose that x
n

! x in the cocountable topology on R. Then (x
n

) is eventually
constant.

Proof. Write B for the set
B = {x

n

| x
n

6= x}.

Certainly B is countable, so it is closed. By construction, x /2 B, so N = X \ B is an open
neighborhood of x. But x

n

! x, so a tail of this sequence must lie in N . Since {x
n

} \ N = {x},
this means that a tail of this sequence is constant, in other words, the sequence is eventually
constant. ⌅

Now consider A = R \ {0} ✓ R in the cocountable topology. A is not closed since the only closed
proper subsets are the countable ones. It follows that A must be dense in R. However, no sequence
in A can converge to 0 since a convergent sequence must be eventually constant.

Similarly, we cannot use convergence of sequences to test for continuity in general topological
spaces. For instance, consider the identity map

id : R
cocountable

�! R
standard

,

where the domain is given the cocountable topology and the codomain is given the usual topology.
This is not continuous, since the interval (0, 1) is open in R

standard

but not in R
cocountable

. On the
other hand, the identity function takes convergent sequences in R

cocountable

, which are necessarily
eventually constant, to convergent sequences in R

standard

. This follows from the following result,
which you proved on HW1.

Proposition 8.2. Let f : X �! Y be continuous. If x
n

! x in X then f(x
n

) ! f(x) in Y .

Proof. Suppose x
n

! x. Let V be an open neighborhood of f(x). Then, since f is continuous,
f�1(V ) is an open neighborhood of x. Thus some tail of (x

n

) lies in f�1(V ), which means that the
corresponding tail of (f(x

n

)) lies in U . ⌅
However, all hope is not lost, since the following is true.

Proposition 8.3. Let f : X �! Y . Then f is continuous if and only if

f(A) ✓ f(A)

for every subset A ✓ X.

Proof. ()) Assume f is continuous. Since f(A) is the intersection of all closed sets containing
f(A), it su�ces to show that if B is such a closed set, then f(A) ✓ B. Well, f(A) ✓ B, so

A = f�1(f(A)) ✓ f�1(B).

Now f is continuous and B is closed, so by definition of the closure, we must have

A ✓ f�1(B).

Applying f then gives f(A) ✓ f(f�1(B)) ✓ B.
(() Suppose that the above subset inclusion holds, and let B ✓ Y be closed. Let A = f�1(B).

We wish to show that A is closed, i.e. that A = A. Since f(f�1(B)) ✓ B, we know that

f(A) ✓ f(A) ✓ B = B.
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Applying f�1 gives

A = f�1(f(A)) ✓ f�1(B) = A.

It follows that A is closed. ⌅

Ok, so we have learned that points in A are good enough to determine continuity of functions,
but these points are not necessarily limits of sequences in A. It turns out that there is an alternative
characterization of these points.

Definition 8.4. Let X be a space and A ✓ X. A point x 2 X is said to be an accumulation
point (or cluster point or limit point) of A if

every neighborhood of x contains a point of A other than x itself.

We sometimes write A0 for the set of accumulation points of A.

Example 8.5. (1) Let A = (0, 1) ✓ R. Then A0 = [0, 1].
(2) Let A = {0, 1} ✓ R. Then A0 = ;.
(3) Let A = [0, 1) [ {2}. Then A0 = [0, 1].
(4) Let A = {1/n} ✓ R. Then A0 = {0}.

The following result follows immediately from our neighborhood characterization of the closure
of a set.

Proposition 8.6. A point x is an acc. point of A if and only if x 2 A \ {x}.

Certainly A\{x} ✓ A, and the closure operation preserves containment, so it follows that A0
✓ A.

From the previous examples, we see that this need not be an equality. We also have A ✓ A, and it
follows that

A [A0
✓ A.

Proposition 8.7. For any subset A ✓ X, we have

A [A0 = A.

Proof. It remains to show that every point in the closure is either in A or in A0. Let x 2 A, but
suppose that x /2 A. Then, by the neighborhood criterion, we have that for every neighborhood N
of x, N \A 6= ;. But since x /2 A, it follows that N \ (A \ {x}) 6= ;. In other words, x 2 A0. ⌅

9. Wed, Sept. 17

Note that, although the motivation came from looking at sequences, there is no direct relation
between accumulation points of A and limits of sequences in A.

We already saw an example of a point in the closure which is not the limit of a sequence. On
the other hand, we can ask

Question 9.1. If (a
n

) is a sequence in A and a
n

! x, is x 2 A0?

Answer. No. Take A = {x} and a
n

= x. But, if we require that x /2 A, then the answer is yes.

As the example X = Rn suggests, sequences and closed sets are much better behaved for metric
spaces.

Proposition 9.2 (The sequence lemma). Let A ✓ X and suppose that X is a metric space. Then
x 2 A if and only if x is the limit of a sequence in A.
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Proof. Suppose a
n

! x. Then either x 2 A0, in which case we are done. Otherwise, there must be
a neighborhood N of x such that N \ (A \ {x}) = ;. But N \ {a

n

} 6= ;, so it must be that x = a
n

for some n, in other words x 2 A.
On the other hand, suppose x 2 A. If x 2 A, we can just take a constant sequence, so suppose not.

For each n, B
1/n

(x) is a neighborhood of x, and x 2 A, so B
1/n

(x)\A 6= ;. Let a
n

2 B
1/n

(x)\A.
Then the sequence a

n

! x, and a
n

2 A by construction. ⌅

The last few lectures, we have seen that closed sets are not as easily understood in general as they
are in the case of metric spaces. Although we will not want to restrict ourselves to metric spaces,
it will nevertheless be helpful to have some good characterizations of the ”reasonable” spaces. We
mention here a few of these properties.

Definition 9.3. A space X is said to be Hausdor↵ (also called T
2

) if, given any two points x and
y in X, there are disjoint open sets U and V with x 2 U and y 2 V .

This is a somewhat mild “separation property” that is held by many spaces in practice and that
also has a number of nice consequences.

The Hausdor↵ property forces sequences to behave well, in the following sense.

Proposition 9.4. In a Hausdor↵ space, a sequence cannot converge simultaneously to more than
one point.

Proof. Suppose x
n

! x and x
n

! y. Every neighborhood of x contains a tail of x
n

, as does any
neighborhood of y. It follows that no neighborhood of x is disjoint from any neighborhood of y.
Since X is Hausdor↵, this forces x = y. ⌅
Proposition 9.5. Every metric space is Hausdor↵.

Proof. If x 6= y, let d = d(x, y) > 0. Then the balls of radius d/2 centered at x and y are the needed
disjoint neighborhoods. ⌅

However, of the (many, many) topologies on a finite set, the only one that is Hausdor↵ is the
discrete topology. Indeed, if points are closed, then every subset is closed, as it is a finite union of
points.

Another property of metric spaces that we used recently was the existence of the balls of radius
1/n.

Definition 9.6. A space X is first-countable if, for each x 2 X, there is a countable collection
{U

n

} of neighborhoods of x such that any other neighborhood contains at least one of the U
n

.

This was the key property used in proving that, in a metric space, an accumulation point of
A ✓ X is the limit of an A-sequence.

Example 9.7. The space X = R
cocountable

is not first countable. To see this, let x 2 X and
suppose that {U

n

} is a collection of neighborhoods of x. By definition, each U
n

is open and misses
only countably many real numbers. Write C

n

= R \U
n

. Then C =
S

n

C
n

is also countable, and it
follows that U = X \C is a neighborhood of x. But U does not contain any U

n

because if U
n

✓ U ,
this would mean that C

n

◆ C. Instead, we see that C
n

✓ C, so that U ✓ U
n

for all n. The above
argument is not quite careful enough, since all of the above inclusions could be equalities. To fix
it, simply note that the countable set

S

n

C
n

cannot be all of R, since it is countable. Let C 0 be
the union C, but with one extra element of R added in. Then C 0 is still countable, and each C

n

is
strictly contained in C.

Similarly, we have
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Proposition 9.8. Let f : X �! Y be a function, where X is first-countable. Then f is continuous
if and only if f takes convergent sequences in X to convergent sequences in Y .

We will return to first-countable (and second-countable) spaces later in the course.

10. Fri, Sept. 19

Last time, there was a discussion of Hausdor↵ spaces. Here is one more nice consequence of this
property.

Proposition 10.1. If X is Hausdor↵, then points are closed in X. (A space is called T
1

if points
are closed.)

Proof. The neighborhood crtierion for the complement X \ {x} is easy to verify. ⌅
In Calculus, you saw functions defined piecewise, and one-sided limits were typically employed

to establish continuity. There is an analogue of this type of construction for spaces.

Lemma 10.2 (Glueing/Pasting Lemma). Let X = A[B, where either (1) both A and B are open
in X or (2) both A and B are closed in X. Then a function f : X �! Y is continuous if and only
if the restrictions f|A and f|B are both continuous.

Proof. ()) We already proved this in Proposition 6.5.
(() We give the proof assuming they are both open. Let V ✓ Y be open. We wish to show that

f�1(V ) ✓ X is open. Let’s restrict to A. We have f�1(V ) \A = f�1

|A (V ). Since f|A is continuous,

it follows that f�1

|A (V ) is open (in A). Since A is open in X, it follows that f�1

|A (V ) is also open in

X. The same argument shows that f�1(V ) \B is open in X. It follows that their unoin, which is
f�1(V ), is open in X. ⌅
Example 10.3. For example, we can use this to paste together the continuous absolute value
function f(x) = |x|, as a function R �! R. We get this by pasting the continuous functions
◆ : [0,1) �! R, x 7! x, and (�1, 0] ⇠= [0,1) �! R, x 7! �x.

Example 10.4. Let’s look at an example of a discontinuous function, for example

f(x) =

⇢

1 x 6= 1
2 x = 1.

We can get this by pasting together two constant functions, but the domains are R \ {1} and {1},
one of which is open but not closed, and the other of which is closed but not open.

Example 10.5. Let X = [0, 1] [ [2, 3], given the subspace topology from R. Note that in this
case each of the subsets A = [0, 1] and B = [2, 3] is both open and closed, so we can specify a
continuous function on X by giving a pair of continuous functions, one on A and the other on B.

Finally, we start to look at the idea of sameness. Two sets are thought of as the same if there
is a bijection between them. A bijection is simply an invertible function. More generally, we have
the following idea.

Definition 10.6. A “morphism” f : X �! Y is said to be an isomorphism if there is a g : Y �!

X such that g � f = id
X

and f � g = id
Y

.

Again, an isomorphism between sets is simply a bijection. In topology, this is called a homeo-
morphism. In other words, a homeomorphism is a continuous function with a continuous inverse.
Since such a map is invertible, clearly it must be one-to-one and onto, but it is not true that every
continuous bijection is a homeomorphism. Before we look at some examples, let’s look at some
non-examples.
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Example 10.7. (1) Any time a set is equipped with two topologies, one of which is a refinement
of the other, the identity map is a continuous bijection (in one direction) that is not a
homeomorphism. For instance, we have the following such examples

id : R �! R
cofinite

, id : R
cocountable

�! R
cofinite

id : R
discrete

�! R
(2) Consider the exponential map exp : [0, 1) �! S1 given by exp(x) = e2⇡ix. This is a con-

tinuous bijection, but it is not a homeomorphism. Since homeomorphisms have continuous
inverses, they must take open sets to open sets and closed sets to closed sets. But we
see that exp does not take the open set U = [0, 1/2) to an open set in S1. The point
exp(0) = (1, 0) has no neighborhood that is contained in exp(U).
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