
11. Monday, Sept. 22

Last time, we were talking about homeomorphisms.

Example 11.1. (1) Consider tan : (0, ⇡
2

) �! (0,1). This is a continuous bijection with
continuous inverse (given by arctangent)

(2) Consider ln : (0,1) �! R. This is a continuous bijection with inverse ex. Composing
homeomorphisms produces homeomorphisms, and we therefore get a homeomorphism

(0, 1)
⇠
=

�! (0,
⇡

2
)

⇠
=

�! (0,1)
⇠
=

�! R.

(3) We similarly get a homeomorphism tan : [0, ⇡
2

)
⇠
=

�! [0,1). It follows that we have

[0, 1) ⇠= [0,1) and (0, 1] ⇠= [0,1).

(4) One can similarly get Bn

r

(x) ⇠= Rn for any n, r, and x.

The above example shows that there really are only three intervals, up to homeomorphism: the
open interval, the half-open interval, and the closed interval.

We say that two spaces are homeomorphic if there is a homeomorphism between them (and
write X ⇠= Y as above). This is the notion of “sameness” for spaces. One of the major overarching
questions for this course will be: how can we tell when two spaces are the same or are actually
di↵erent?

A standard way to show that two spaces are not homeomorphic is to find a property that one has
and the other does not. For instance every metric space is Hausdor↵, so no non-Hausdor↵ space is
the “same” as a metric space. But what property distinguishes the 3 interval types above? As we
learn about more and more properties of spaces, this question will become easier to answer.

In the exponential example from last time, we noted that homeomorphisms must take open sets
to open sets. Such a map is called an open map. Similarly, a closed map takes closed sets to
closed sets.

Proposition 11.2. Let f : X �! Y be a continuous bijection. The following are equivalent:

(1) f is a homeomorphism
(2) f is an open map
(3) f is a closed map

If we drop the assumption that f is bijective, it is no longer true that being an open map is
equivalent to being a closed map. For example, the inclusion (0, 1) �! R is open but not closed,
and the inclusion [0, 1] �! R is closed but not open.

Put on your hard hats! We turn now to the construction phase. We considered the product of
metric spaces: let’s define the product for spaces. We already know what property it should satisfy:
we want it to be true that mapping continuously from some space Z into the product X⇥Y should
be the same as mapping separately to X and to Y . Another way to describe this is that we want
X ⇥ Y to be the “universal” example of a space with a pairs of maps to X and Y .

Well, if the projection p
X

: X ⇥ Y �! X is to be continuous, we need p�1

X

(U) = U ⇥ Y to be
open whenever U ✓ X is open. Similarly, we need X ⇥ V to be open if V ✓ Y is open. We are
forced to include these open sets, but we don’t want to throw in anything extra that we don’t need.
In other words, we want the product topology on X⇥Y to be the coarsest topology containing the
sets U ⇥ Y and X ⇥ V .

Note that if we consider the collecion

B = {U ⇥ Y } [ {X ⇥ V },
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this cannot be a basis because it fails the intersection property. A typical intersection is

(U ⇥ Y ) \ (X ⇥ V ) = U ⇥ V,

and if we consider all sets of this form, we do get a basis.

Definition 11.3. Given spaces X and Y , the product topology on X ⇥ Y has basis given by
sets of the form U ⇥ V , where U and V are open in X and Y , respectively.

This satisfies the universal property of a product. We have engineered the definition to make
this so, but we will check this anyway. First, we make a little detour.

We pointed out above that if we considered the collection

B = {U ⇥ Y } [ {X ⇥ V },

we would not have a basis, as the intersection property failed. We remedied this by considering
instead intersections of elements of B. This is a useful idea that shows up often.

Given a set X, a collection C of subsets of X is called a prebasis for a topology on X if the
collection covers X. Actually, in all of the textbooks, this is called a subbasis, but that is a terrible
name, since it suggests that it is a basis. I will try to stick with the better name of prebasis.

We can then get a basis from the prebasis by considering finite intersections of prebasis elements.

Example 11.4. The collection of rays (a,1) and (�1, b) give a prebasis for the standard topology
on R.

We introduced the product topology above and mentioned the universal property, but let’s spend
a little bit of time with it to really nail down the concept.

Theorem-Definition 11.5. Let X and Y be spaces. Then X⇥Y ,
together with the projection maps

p
X

: X ⇥ Y �! X and p
Y

: X ⇥ Y �! Y,

satisfies the following “universal property”: given any space Z and
maps g : Z �! X and h : Z �! Y , there is a unique continuous
map f : Z �! X ⇥ Y such that

g = p
X

� f, h = p
Y

� f.

X

Z

g

00

h ..

9!f // X ⇥ Y
p

X

::

p

Y

$$
Y

Proof. The uniqueness is clear: if there exists such a continuous map f , then the conditions force
this to be f = (g, h). The only question is whether or not f is continuous. Consider a typical basis
element U ⇥ V for the product topology on X ⇥ Y . Then

f�1(U ⇥ V ) = {z 2 Z | f(z) 2 U ⇥ V } = {z 2 Z | g(z) 2 U and h(z) 2 V }

= g�1(U) \ h�1(V ),

which is an intersection of open sets and therefore open. ⌅

Ok, so we showed that X ⇥ Y satisfies this property, but why do we call this a “universal
property”?

Proposition 11.6. Suppose W is a space with continuous maps q
X

: W �! X and q
Y

: W �! Y
also satisfying the property of the product. Then W is homeomorphic to X ⇥ Y .
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Proof. The universal property for X ⇥ Y gives us a map f : W �! X ⇥ Y .

X

W

q

X

00

q

Y ..

9!f // X ⇥ Y
p

X

::

p

Y

$$
Y

But W also has a universal property, so we get a map ' : X ⇥ Y �! W as well.

X

X ⇥ Y

p

X

00

p

Y ..

9!' // W
q

X

<<

q

Y

""
Y

Now make Pacman eat Pacman!

X

W

q

X

..

q

Y

00

f // X ⇥ Y

p

X

66

p

Y

((

' // W

q

X

>>

q

Y

  
Y

We have a big diagram, but if we ignore all dotted lines, there is an obvious horizontal map
W �! W to fill in the diagram, namely the id

W

. Since the universal property guarantees that
there is a unique way to fill it in, we find that ' � f = id

W

. Reversing the pacmen gives the other
equality f � ' = id

X⇥Y

. In other words, f is a homeomorphism, and ' = f�1. ⌅
This argument may seem strange the first time you see it, but it is a typical argument that

applies any time you define an object via a universal property. The argument shows that any two
objects satisfying the universal property must be “the same”.

Ok, so we understand X ⇥ Y as a topological space. What about a product of more than
two spaces? Well, if we have a finite collection X

1

, . . . , X
n

of spaces, the product topology on
X

1

⇥ · · ·⇥X
n

has basis given by the U
1

⇥ · · ·⇥U
n

, or equivalently, prebasis given by the p�1

j

(U
j

).
Note that this is equivalent because the basis element U

1

⇥ · · ·⇥ U
n

, is a finite intersection of the
prebasis elements p�1

j

(U
j

).
But what about the product of an arbitrary number of spaces? Here, the property we want is

that whenever we have a space Z and maps f
j

: Z �! X
j

for all i, then there should be a unique

continuous map f : Z �!

Y

j2J
X

j

such that p
j

� f = f
j

.

Just as for finite products, we want the projection maps p
j

:
Y

j2J
�! X

j

to be continuous. This

forces each p�1

j

(U
j

) to be continuous, and we can again choose these for a prebasis. We thus get a

basis consisting of finite intersections p�1

j1
(U

j1

) \ · · · \ p�1

j

k

(U
j

k

).
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Definition 11.7. Given spaces X
j

, one for each j 2 J , the product topology on
Y

j2J
X

j

has basis

consisting of the p�1

j1
(U

j1

) \ · · · \ p�1

j

k

(U
j

k

).

12. Wed, Sept. 27

On the homework that was just returned, a few people used the fact that a product of continuous
maps is continuous. This is true, but we have not discussed it yet, so let’s do that now.

Proposition 12.1. Let f : X �! Y and f 0 : X 0
�! Y 0 be continuous. Then the product map

f ⇥ f 0 : X ⇥X 0
�! Y ⇥ Y 0 is also continuous.

Proof. This follows very easily from the universal property. If we want to map continuously to
Y ⇥ Y 0, it su�ces to specify continuous maps to Y and Y 0. The continuous map X ⇥X 0

�! Y is
the composition

X ⇥X 0 p

X

��! X
f

�! Y,

and the other needed map is the composition

X ⇥X 0 p

X

0
��! X 0 f

0
�! Y 0.

⌅

Last time, we introduced the product topology on
Y

↵2A
X

j

, which had basis

B

prod

=

(

Y

↵

U
↵

| U
↵

✓ X
↵

is open, and only finitely many U
↵

are proper subsets

)

.

Proposition 12.2. The product topology on
Y

↵2A
X

↵

, as defined above, satisfies the following uni-

versal property: given any space Z and continuous maps f
↵

: Z �! X
↵

for all ↵ 2 A, there is a

unique continuous f : Z �!

Y

↵2A
X

↵

such that p
↵

� f = f
↵

for all ↵ 2 A.

Proof. The same proof as that given in 11.5 works here. Given the maps f
↵

, we define f by
f(z)

↵

= f
↵

(z). Again, the equations p
↵

� f = f
↵

force this choice on us. The only question is

whether this makes f into a continuous map. Since the topology on
Y

↵2A
X

↵

is defined by the

prebasis elements p�1

↵

(U
↵

), it su�ces to show that each of these pulls back to an open set. But

f�1(p�1

↵

(U
↵

)) = (p
↵

� f)�1(U
↵

) = f�1

↵

(U
↵

),

which is open since f
↵

is continuous. ⌅

But there is another obvious guess, coming from the answer for finite products. We can think

about the basis consisting of products
Y

↵

U
↵

. This is no longer equivalent to the product topology!

Definition 12.3. Suppose given a collection of spaces X
↵

. The box topology on
Y

↵2A
X

↵

is

generated by the basis
n

Y

↵2A
U
↵

o

.
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As discussed above, the box topology has more open sets; in other words, the box topology is
finer than the product topology. To see that the box topology does not have the universal property

we want, consider the following example: let � : R �!

Y

n2N
R be the diagonal map, all of whose

component maps are simply the identity. For each n, let I
n

= (�1

n

, 1

n

). In the box topology, the

subset I =
Y

n

I
n

✓

Y

n

R is an open set, but

��1(I) =
\

n

id�1(I
n

) =
\

n

I
n

= {0}

is not open. So the diagonal map is not continuous in the box topology!

Since we are now considering arbitrary products, it may be useful to stop and clarify what we
mean. For instance, we might want to consider a countable infinite product R⇥ . . . .

Let X
↵

, for ↵ 2 A, be sets. The cartesian product
Y

↵2A
X

↵

is the collection of tuples (x
↵

), where

x
↵

2 X
↵

. This means that for each ↵ 2 A, we want an element x
↵

2 X
↵

. In other words, we
should have a function

x� : A �! X =
[

↵

X
↵

with the condition that this function satisfies x
↵

2 X
↵

. With this language, the “projection”
Y

↵2A
X

↵

�! X
↵

is simply the restriction along {↵} ,! ↵.

In the case that all X
↵

are the same set X, then
Y

↵2A
X

↵

is simply the set of functions A �! X.

So, the countably infinite product of R with itself is synonymous with the collection of sequences
in R.

Example 12.4. We mentioned above that the set of sequences in R is the infinite product
Q

n

R.
What does a neighborhood of a sequence (x

n

) look like in the product topology? We are only
allowed to constrain finitely many coordinates, so a neighborhood consists of all sequences that are
near to (x

n

) in some fixed, finitely many coordinates.

Proposition 12.5. Let A
j

✓ X
j

for all j 2 J . Then

Y

j

A
j

=
Y

j

A
j

in both the product and box topologies.

Proof. As usual, we have two subsets of
Y

j

X
j

we want to show are the same, so we establish that

each is a subset of the other. The following proof works in both topologies under consideration.

(✓) Let (x
j

) 2

Y

A
j

. We use the neighborhood criterion of the closure to show that (x
j

) 2

Y

j

A
j

. Thus let U =
Y

j

U
j

be a basic open neighborhood of (x
j

). Then for each j, U
j

is a

neighborhood of x
j

. Since x
j

2 A
j

, it follows that U
j

must meet A
j

in some point, say y
j

. It then

follows that (y
j

) 2 U \

Y

j

A
j

. By the neighborhood criterion, it follows that (x
j

) 2
Y

j

A
j

.
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(◆) Now suppose that (x
j

) 2
Y

j

A
j

. For each j, let U
j

be a neighborhood of x
j

. Then p�1

j

(U
j

)

is a neighborhood of (x
j

), so it must meet
Y

j

A
j

. But this means precisely that U
j

meets A
j

. It

follows that x
j

2 A
j

for all j. ⌅
Note that this implies that an (arbitrary) product of closed sets is closed, using either the product

or box topologies. In particular, I2 is closed in R2 and T 2 is closed in R4.

13. Fri, Sept. 26

Proposition 13.1. Suppose X
j

is Hausdor↵ for each j 2 J . Then so is
Y

j

X
j

in both product and

box topologies.

Proof. Let (x
j

) 6= (x0
j

) 2
Y

j

X
j

. Then x
`

6= x0
`

for some particular `. Since X
`

is Hausdor↵, we can

find disjoint neighborhoods U and U 0 of x
`

and x0
`

in X
`

. Then p�1

`

(U) and p�1

`

(U 0) are disjoint

neighborhoods of (x
j

) and (x0
j

) in the product topology, so
Y

j

X
j

is Hausdor↵ in the product

topology.
For the box topology, we can either say that the above works just as well for the box topology,

or we can say that since the box topology is a refinement of the product topology and the product
topology is Hausdor↵, it follows that the box topology must also be Hausdor↵. ⌅

The converse is true as well. To see this, we use the fact that a subspace of a Hausdor↵ space

is Hausdor↵. How do we view X
`

as a subspace of
Y

j

X
j

? We can think about an axis inclusion.

Thus pick y
j

2 X
j

for j 6= `. We define

a
`

: X
`

�!

Y

j

X
j

by

a
`

(x)
j

=

⇢

x j = `
y
j

j 6= `.

Note that, by the universal property of the product, in order to check that a
`

is continuous, it
su�ces to check that each coordinate map is continuous. But the coordinate maps are the identity
and a lot of constant maps, all of which are certainly continuous. The map a

`

is certainly injective
(assuming all X

j

are nonempty!), and it is an example of an embedding.

Definition 13.2. A map f : X �! Y is said to be an embedding if it is a homeomorphism onto
its image f(X), equipped with the subspace topology.

We already discussed injectivity and continuity of the axis inclusion a
`

, so it only remains to
show this is open, as a map to a

`

(X
`

). Let U ✓ X
`

be open. Then

a
`

(U) = p�1

`

(U) \ a
`

(X
`

),

so a
`

(U) is open in the subspace topology on a
`

(X
`

).

We will often do the above sort of exercise: if we introduce a new property or construction, we
will ask how well this interacts with other constructions/properties.

Here is another example of an embedding.
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Example 13.3. Let f : X �! Y be continuous and define the graph of f to be

�(f) = {(x, y) | y = f(x)} ✓ X ⇥ Y.

The function
� : X �! X ⇥ Y, �(x) = (x, f(x))

is an embedding with image �(f).
Let us verify that this is indeed an embedding. Injectivity is easy (this follows from the fact that

one of the coordinate maps is injective), and continuity comes from the universal property for the
product X⇥Y since id

X

and f are both continuous. Note that (p
Y

)|�(f), which is continuous since
it is the restriction of the continuous projection p

Y

, provides an inverse to �.

What happens if we turn all of the arrows around in the defining property of a product? We
might call such a thing a “coproduct”. To be precise we would want a space that is universal among
spaces equipped with maps from X and Y . In other words, given a space Z and maps f : X �! Z
and g : Y �! Z, we would want a unique map from the coproduct to Z, making the following
diagram commute.

X

##

f

##
X q Y

9!h // Z

Y

;;

g

;;

The glueing lemma gave us exactly such a description, in the case that our domain space X was
made up of disjoint open subsets A and B. In general, the answer here is given by the disjoint
union.

Recall that, as a set, the disjoint union of sets X and Y is the subset

X q Y ✓ (X [ Y )⇥ {1, 2},

where X qY = (X ⇥ {1})[ (Y ⇥ {2}). More generally, given sets X
j

for j 2 J , their disjoint union
a

j

X
j

is the subset

a

j

X
j

✓

0

@

[

j

X
j

1

A

⇥ J

given by
a

j

X
j

=
[

j

(X
j

⇥ {j}) .

There are natural inclusions ◆
X

: X �! XqY or more generally ◆
X

j

: X
j

,!
a

j

X
j

. We topologize

the coproduct by giving it the finest topology such that all ◆
X

j

are continuous. In other words, a

subset U ✓

a

j

X
j

is open if and only if ◆�1

j

(U) ✓ X
j

is open for all j.

Note that in the case of a coproduct of two spaces, the subspace topology on X ✓ X q Y agrees
with the original topology on X. Furthermore, both X and Y are open in X q Y , so the universal
property for the coproduct is precisely the glueing lemma.
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