
20. Mon, Oct. 13

What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to
Chapter 4.

The first idea is connectedness. Essentially, we want to say that a space cannot be decomposed
into two disjoint pieces.

Definition 20.1. A disconnection (or separation) of a space X is a pair of disjoint, nonempty
open subsets U, V ✓ X with X = U [ V . We say that X is connected if it has no disconnection.

Example 20.2. (1) If X is a discrete space (with at least two points), then any pair of disjoint
nonempty subsets gives a disconnection of X.

(2) Let X be the subspace (0, 1) [ (2, 3) of R. Then X is disconnected.
(3) More generally, if X ⇠= A

`

B for nonempty spaces A and B, then X is disconnected.
(4) Another example of a disconnected subspace of R is the subspace Q. A disconnection of Q

is given by (�1,⇡) \Q and (⇡,1) \Q.
(5) Any set with the trivial topology is connected, since there is only one nonempty open set.
(6) Of the 29 topologies on X = {1, 2, 3}, 19 are connected, and the other 10 are disconnected.

For example, the topology {;, {1}, X} is connected, but {;, {1}, {2, 3}, X} is not.
(7) If X is a space with the generic point (or included point) topology, in which the nonempty

open sets are precisely the ones containing a special point x
0

, then X is connected.
(8) If X is a space with the excluded point topology, in which the open proper subsets are the

ones missing a special point x
0

, then X is connected.
(9) The lower limit topology R

``

is disconnected, as the basis elements [a, b) are both open and
closed (clopen!), which means that their complements are open.

Proposition 20.3. Let X be a space. The following are equivalent:

(1) X is disconnected
(2) X ⇠= A

`

B for nonempty spaces A and B
(3) There exists a nonempty, clopen, proper subset U ✓ X
(4) There exists a continuous surjection X ⇣ {0, 1}, where {0, 1} has the discrete topology.

Now let’s look at an interesting example of a connected space.

Proposition 20.4. The only (nonempty) connected subspaces of R are singletons and intervals.

Proof. It is clear that singletons are connected. Note that, by an interval, we mean simply a convex
subset of R. It is clear that any connected subset must be an interval since if A is connected and
a < b < c with a, c 2 A, then either b 2 A or (�1, b) \A and (b,1) \A give a separation of A.

So it remains to show that intervals are connected. Let I ✓ R be an interval with at least two
points, and let U ✓ I be nonempty and clopen. We wish to show that U = I. Let a 2 U . We will
show that U \ [a,1) = I \ [a,1). A similar argument will show that U \ (�1, a] = I \ (�1, a].

Consider the set
R

a

= {b 2 I | [a, b] ✓ U}.
Note that a 2 R

a

, so that R
a

is nonempty. If R
a

is not bounded above, then [a,1) ✓ U ✓ I, and
we have our conclusion. Otherwise, the set R

a

has a supremum s = supR
a

in R. Since we can
express s as a limit of a U -sequence and since U is closed in I, it follows that if s 2 I then s must
also lie in U .

Note that if s /2 I, then since I is an interval we have

U \ [a,1) = [a, s) = I \ [a,1).

On the other hand, as we just said, if s 2 I then s 2 U . But U is open, so some ✏-neighborhood of
s (in I) lies in U . But no point in (s, s+ ✏/2) can lie in U (or I), since any such point would then
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also lie in R
a

. Again, since I is an interval we have

U \ [a,1) = [a, s] = I \ [a,1).

⌅
One of the most useful results about connected spaces is the following.

Proposition 20.5. Let f : X �! Y be continuous. If X is connected, then so is f(X) ✓ Y .

Proof. This is a one-liner. Suppose that U ✓ f(X) is closed and open. Then f�1(U) must be
closed and open, so it must be either ; or X. This forces U = ; or U = f(X). ⌅

Since the exponential map exp : [0, 1] �! S1 is a continuous surjection, it follows that S1 is
connected. More generally, we have

Proposition 20.6. Let q : X �! Y be a quotient map with X connected. Then Y is connected.

Which of the other constructions we have seen preserve connectedness? All of them! (Well,
except that subspaces of connected spaces need not be connected, as we have already seen.

Proposition 20.7. Let A
i

✓ X be connected for each i, and assume that x
0

2
T

i

A
i

6= ;. Then
S

i

A
i

is connected.

Proof. Assume each A
i

is connected, and let U ✓
S

i

A
i

be nonempty and clopen. Then x 2 U for
some x 2

S

i

A
i

. Suppose x 2 A
i0 . Then U \A

i0 is nonempty and clopen in A
i0 , so U \A

i0 = A
i0 .

In other words, A
i0 ✓ U . Since x

0

2 A
i0 , it follows that x

0

2 U . But now for any other A
j

, we
have that x

0

2 A
j

\ U , so that A
j

\ U is nonempty and clopen in A
j

. It follows that A
j

✓ U . ⌅

21. Wed, Oct. 15

Last time, we introduced the idea of connectedness and showed (1) that the connected subsets
of R are precisely the intervals and (2) the image of a connected space under a continuous map is
connected. This implies.

Theorem 21.1 (Intermediate Value Theorem). Let f : [a, b] �! R be continuous. Then f attains
ever intermediate value between f(a) and f(b).

Proof. This follows from the fact that the image is an interval. ⌅
We also showed that an overlapping union of connected subspaces is connected.
As an application, we get that products interact well with connectedness.

Proposition 21.2. Assume X
i

6= ; for all i 2 {1, . . . , n}. Then
n

Y

i=1

X
i

is connected if and only if

each X
i

is connected.

Proof. ()) This follows from Prop 20.5, as p
i

:
Y

i

X
i

�! X
i

is surjective (this uses that all X
j

are nonempty).
(() Suppose each X

i

is connected. By induction, it su�ces to show that X
1

⇥X
2

is connected.
Pick any z 2 X

2

. We then have the embedding X
1

,! X
1

⇥ X
2

given by x 7! (x, z). Since X
1

is connected, so is its image C in the product. Now for each x
1

2 X
1

, we have an embedding
◆
x1 : X

2

,! X
1

⇥X
2

given by y 7! (x
1

, y). Let D
x1 = ◆

x1(X2

) [ C. Note that each D is connected,
being the overlapping union of two connected subsets. But we can write X

1

⇥X
2

as the overlapping
union of all of the D

x1 , so by the previous result the product is connected. ⌅
The following result is easy but useful.
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Proposition 21.3. Let A ✓ B ✓ A and suppose that A is connected. Then so is B.

Proof. Exercise ⌅

Theorem 21.4. Assume X
i

6= ; for all i 2 I, where is I is arbitrary. Then
Y

i

X
i

is connected if

and only if each X
i

is connected.

Proof. As in the finite product case, it is immediate that if the product is connected, then so is
each factor.

We sketch the other implication. We have already showed that each finite product is connected.

Now let (z
i

) 2
Y

i

X
i

. For each j 2 I, write D
j

= p�1

j

(z
j

) ✓
Y

i

X
i

.

For each finite collection j
1

, . . . , j
k

2 I, let

F
j1,...,j

k

=
\

j 6=j1,...,j
k

D
j

✓
Y

i

X
i

.

Then F
j1,...,j

k

⇠= X
j1 ⇥ · · · ⇥ X

j

k

, so it follows that F
j1,...,j

k

is connected. Now (z
i

) 2 F
j1,...,j

k

for
every such tuple, so it follows that

F =
[

F
j1,...,j

k

is connected.
It remains to show that F is dense in

Y

i

X
i

(in other words, the closure of F is the whole

product). Let
U = p�1

j1
(U

j1) \ · · · \ p�1

j

k

(U
j

k

)

be a nonempty basis element. Then U meets f
j1,...,j

k

, so U meets F . Since U was arbitrary, it
follows that F must be dense. ⌅

Note that the above proof would not have worked with the box topology. We can show directly
that RN, equipped with the box topology, is not connected. Consider the subset B ⇢ RN consisting

of bounded sequences. If (z
i

) 2 B, then
Y

i

(z
i

� 1, z
i

+ 1) is a neighborhood of (z
i

) in B. On the

other hand, if (z
i

) /2 B, the same formula gives a neighborhood consisting entirely of unbounded
sequences. We conclude that B is a nontrivial clopen set in the box topology.

Ok, so we have looked at examples and studied this notion of being connected, but if you asked
your calculus students to describe what it should mean for a subset of R to be connected, they
probably wouldn’t come up with the “no nontrivial clopen subsets” idea. Instead, they would
probably say something about being able to connect-the-dots. In other words, you should be able
to draw a line from one point to another while staying in the subset. This leads to the following
idea.

Definition 21.5. We say that A ✓ X is path-connected if for every pair a, b of points in A,
there is a continuous function (a path) � : I �! A with �(0) = a and �(1) = b.

This is not unrelated to the earlier notion.

Proposition 21.6. If A ✓ X is path-connected, then it is also connected.

Proof. Pick a point a
0

2 A. For any other b 2 A, we have a path �
b

in A from a
0

to b. Then the
image �

b

(I) is a connected subset of A containing both a
0

and b. It follows that

A =
[

b2A
�
b

(I)
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is connected, as it is the overlapping union of connected sets. ⌅
For subsets A ✓ R, we have

A is path-connected ) A is connected , A is an interval ) A is path-connected.

So the two notions coincide for subsets of R. But the same is not true in R2!

Example 21.7 (Topologist’s sine curve). Let � be the graph of sin(1/x) for x 2 (0,⇡].Then �
is homeomorphic to (0,⇡] and is therefore path-connected and connected. Let C be the closure
of � in R2. Then C is connected, as it is the closure of a connected subset. However, it is not
path-connected (HW VI), as there is no path in C connecting the origin to the right end-point
(⇡, 0).

22. Fri, Oct. 17

Path-connectedness has much the same behavior as connectedness.

Proposition 22.1.

(1) Images of path-connected spaces are path-connected
(2) Overlapping unions of path-connected spaces are path-connected
(3) Finite products of path-connected spaces are path-connected

However, the topologist’s sine curve shows that closures of path-connected subsets need not be
path-connected.

Our proof of connectivity of
Y

i

X
i

last time used this closure property for connected sets, so

the earlier argument does not adapt easily to path-connectedness. But it turns out to be easier to
prove.

Theorem 22.2. Assume X
i

6= ; for all i 2 I, where is I is arbitrary. Then
Y

i

X
i

is path-connected

if and only if each X
i

is path-connected.

Proof. The interesting direction is ((). Thus assume that each X
i

is path-connected. Let (x
i

) and

(y
i

) be points in the product
Y

i

X
i

. Then for each i 2 I there is a path �
i

in X
i

with �
i

(0) = x
i

and �
i

(1) = y
i

. By the universal property of the product, we get a continuous path

� = (�
i

) : [0, 1] �!
Y

i

X
i

with �(0) = (x
i

) and �(1) = (y
i

). ⌅

The overlapping union property for (path-)connectedness allows us to make the following defi-
nition.

Definition 22.3. Let x 2 X. We define the connected component (or simply component) of x
in X to be

C
x

=
[

x2C
connected

C.

Similarly, the path-component of X is defined to be

PC
x

=
[

x2P
connected

P.

38



The overlapping union property guarantees that C
x

is connected and that PC
x

is path-connected.
Since path-connected sets are connected, it follows that for any x, we have PC

x

✓ C
x

. An immediate
consequence of the above definition(s) is that any (path-)connected subset of X is contained in some
(path-)component.

Example 22.4. Consider Q, equipped with the subspace topology from R. Then the only con-
nected subsets are the singletons, so C

x

= {x}. Such a space is said to be totally disconnected.

Note that for any space X, each component C
x

is closed as C
x

is a connected subset containing
x, which implies C

x

✓ C
x

. If X has finitely many components, then each component is the
complement of the finite union of the remaining components, so each component is also open, and
X decomposes as a disjoint union

X ⇠= C
1

q C
2

q · · ·q C
n

of its components. But this does not happen in general, as the previous example shows.
The situation is worse for path-components: they need not be open or closed, as the topologist’s

sine curve shows.

Definition 22.5. Let X be a space. We say that X is locally connected if any neighborhood
U of any point x contains a connected neighborhood x 2 V ⇢ U . Similarly X is locally path-
connected if any neighborhood U of any point x contains a path-connected neighborhood x 2
V ⇢ U .

This may seem like a strange definition, but it has the following nice consequence.

Proposition 22.6. Let X be a space. The following are equivalent.

(1) X is locally connected
(2) X has a basis consisting of connected open sets
(3) for every open set U ✓ X, the components of U are open in X

Proof. We show (1) , (3).
Suppose that X is locally connected and let U ✓ X be open. Take C ✓ U to be a component.

Let x 2 C. We can then find a connected neighborhood x 2 V ✓ U . Since C is the component of
x, we must have V ✓ C, which shows that C is open.

Suppose, on the other hand, that (3) holds. Let U be a neighborhood of x. Then the component
C
x

of x in U is the desired neighborhood V . ⌅
In particular, this says that the components are open if X is locally connected.
The locally path-connected property is even better.

Proposition 22.7. Let X be a space. The following are equivalent.

(1) X is locally path-connected
(2) X has a basis consisting of path-connected open sets
(3) for every open set U ✓ X, the path-components of U are open in X
(4) for every open set U ✓ X, every component of U is path-connected and open in X.

Proof. The implications (1) , (3) are similar to the above. We argue for (1) , (4).
Assume X is locally path-connected, and let C be a component of an open subset U ✓ X. Let

P ✓ C be a nonempty path-component. Then P is open inX. But all of the other path-components
of C are also open, so their union, which is the complement of P , must be open. It follows that P
is closed. Since C is connected, we must have P = C.

On the other hand, suppose that (4) holds. Let U be a neighborhood of x. Then the component
C
x

of x in U is the desired neighborhood V . ⌅
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In particular, this says that the components and path-components agree if X is locally path-
connected.

Just as path-connected implies connected, locally path-connected implies locally-connected. But,
unfortunately, there are no other implications between the four properties.

Example 22.8. The topologist’s sine curve is connected, but not path-connected or locally con-
nected or locally path-connected (see HWVI). Thus it is possible to be connected but not locally
so.

Example 22.9. For any space X, the cone on X is defined to be CX = X ⇥ [0, 1]/X ⇥ {1}. The
cone on any space is always path-connected. In particular, the cone on the topologist’s sine curve
is connected and-path connected but not locally connected or locally path-connected.

Example 22.10. A disjoint union of two topologist’s sine curves gives an example that is not
connected in any of the four ways.

Example 22.11. Note that if X is locally path-connected, then connectedness is equivalent to
path-connectedness. A connected example would be R or a one-point space. A disconnected
example would be (0, 1) [ (2, 3) or a two point (discrete) space.

Finally, we have spaces that are locally connected but not locally path-connected.

Example 22.12. The cocountable topology on R is connected and locally connected but not
path-connected or locally path-connected. (See HWVI)

Example 22.13. The cone on the cocountable topology will give a connected, path-connected,
locally connected space that is not locally path-connected.

Example 22.14. Two copies of R
cocountable

give a space that is locally connected but not connected
in the other three ways.
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