
23. Mon, Oct. 20

The next topic is one of the major ones in the course: compactness. As we will see, this is the
analogue of a “closed and bounded subset” in a general space. The definition relies on the idea of
coverings.

Definition 23.1. An open cover of X is a collection U of open subsets that cover X. In other
words,

S

U2U U = X. Given two covers U and V of X, we say that V is a subcover if V ✓ U .

Definition 23.2. A space X is said to be compact if every open cover has a finite subcover (i.e.
a cover involving finitely many open sets).

Example 23.3. Clearly any finite topological space is compact, no matter the topology.

Example 23.4. An infinite set with the discrete topology is not compact, as the collection of
singletons gives an open cover with no finite subcover.

Example 23.5. R is not compact, as the open cover U = {(�n, n) | n 2 N} has no finite subcover.

Example 23.6. Similarly [0,1) is not compact, as the open cover U = {[0, n)} has no finite
subcover. Recall that [0,1) ⇠= [a, b).

Theorem 23.7. Let a < b. Then [a, b] is a compact subset of R.
Proof. Let U be an open cover. Then some element of the cover must contain a. Pick such an
element and call it U

1

.
Consider the set

E = {c 2 [a, b] | [a, c] is finitely covered by U}.
Certainly a 2 E and E is bounded above by b. By the Least Upper Bound Axiom, s = sup E exists.
Note that a  s  b, so we must have s 2 U

s

for some U
s

2 U . But then for any c < s with c 2 U
s

,
we have c 2 E . This means that

[a, c] ✓ U
1

[ · · · [ U
k

for U
1

, . . . , U
k

2 U . But then [a, s] ✓ U
1

[ · · ·[U
k

[U
s

. This shows that s 2 E . On the other hand,
the same argument shows that for any s < d < b with d 2 U

s

, we would similarly have d 2 E . Since
s = sup E , there cannot exist such a d. This implies that s = b. ⌅

Like connectedness, compactness is preserved by continuous functions.

Proposition 23.8. Let f : X �! Y be continuous, and assume that X is compact. Then f(X) is
compact.

Proof. Let V be an open cover of f(X). Then U = {f�1(V ) | V 2 V} is an open cover of X. Let
{U

1

, . . . , U
k

} be a finite subcover. It follows that the corresponding {V
1

, . . . , V
k

} is a finite subcover
of V. ⌅
Example 23.9. Recall that we have the quotient map exp : [0, 1] �! S1. It follows that S1 is
compact.

Theorem 23.10 (Extreme Value Theorem). Let f : [a, b] �! R be continuous. Then f attains a
maximum and a minimum.

Proof. Since f is continuous and [a, b] is both connected and compact, the same must be true of
its image. But the compact, connected subsets are precisely the closed intervals. ⌅

The following result is also quite useful.

Proposition 23.11. Let X be Hausdor↵ and let A ✓ X be a compact subset. Then A is closed in
X.
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Proof. Pick any point x 2 X \ A (if we can’t, then A = X and we are done). For each a 2 A, we
have disjoint neighborhoods a 2 U

a

and x 2 V
a

. Since the U
a

cover A, we only need finitely many,
say U

a1 , . . . , Ua

k

to cover A. But then the intersection

V = V
a1 \ · · · \ V

a

k

of the corresponding V
a

’s is disjoint from the union of the U
a

’s and therefore also from A. Since
V is a finite intersection of open sets, it is open and thus gives a neighborhood of x in X \ A. It
follows that A is closed. ⌅
Exercise 23.12. If A ✓ X is closed and X is compact, then A is compact.

Combining these results gives the following long-awaited consequence.

Corollary 23.13. Let f : X �! Y be continuous, where X is compact and Y is Hausdor↵, then
f is a closed map.

24. Wed, Oct. 22

In particular, if f is already known to be a continuous bijection, then it is automatically a home-
omorphism. For example, this shows that the map I/@I �! S1 is a homeomorphism. Similarly,
from Example 15.5 we have Dn/@Dn ⇠= Sn.

We will next show that finite products of compact spaces are compact, but we first need a lemma.

Lemma 24.1 (Tube Lemma). Let X be compact and Y be any space. If W ✓ X ⇥ Y is open and
contains X ⇥ {y}, then there is a neighborhood V of y with X ⇥ V ✓ W .

Proof. For each x 2 X, we can find a basic neighborhood U
x

⇥ V
x

of (x, y) in W . The U
x

’s give
an open cover of X, so we only need finitely many of them, say U

x1 , . . . , Ux

n

. Then we may take
V = V

x1 \ · · · \ V
x

n

. ⌅
Proposition 24.2. Let X and Y be nonempty. Then X ⇥ Y is compact if and only if X and Y
are compact.

Proof. As for connectedness, the continuous projections makeX and Y compact ifX⇥Y is compact.
Now suppose that X and Y are compact and let U be an open cover. For each y 2 Y , the cover

U of X ⇥ Y certainly covers the slice X ⇥ {y}. This slice is homeomorphic to X and therefore
finitely-covered by some V ⇢ U . By the Tube Lemma, there is a neighborhood V

y

of y such that
the tube X ⇥ V

y

is covered by the same V. Now the V
y

’s cover Y , so we only need finitely many
of these to cover X. Since each tube is finitely covered by U and we can cover X ⇥ Y by finitely
many tubes, it follows that U has a finite subcover. ⌅
Theorem 24.3 (Heine-Borel). A subset A ✓ Rn is compact if and only if it is closed and bounded
(contained in a single metric ball).

Proof. Suppose A is compact. Then A must be closed in Rn since Rn is Hausdor↵. To see that A is
bounded, pick any point a 2 A (if A is empty, we are certainly done). Then the collection of balls
B

n

(a)\A gives an open cover of A, since any other point in A is a finite distance away from a. Since
A is compact, there must be a finite subcover {B

n1(a), . . . , Bn

k

(a)}. Let N = max{n
1

, . . . , n
k

}.
Then A ✓ B

N

(a).
On the other hand, suppose that A is closed and bounded in Rn. Since A is bounded, it is

contained in [�k, k]n for some k > 0. But this product of intervals is compact since each interval
is compact. Now A is a closed subset of a compact space, so it is compact. ⌅

In fact, the forward implication of the above proof works to show that
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Proposition 24.4. Let A ✓ X, where X is metric and A is compact. Then A is closed and
bounded in X.

But the reverse implication is not true in general, as the next example shows.

Example 24.5. Consider [0, 1] \Q ✓ Q. This is certainly closed and bounded, but we will see it
is not compact. Consider the open cover U =

�

[0, 1

⇡

� 1

n

)
 

n2N [ {( 1
⇡

, 1]}.

Again, we have shown that compactness interacts well with finite products, and we would like
a similar result in the arbitrary product case. This is a major theorem, known as the Tychono↵
theorem. First, we show the theorem does not hold with the box topology.

Example 24.6. Let D = [�1, 1] and consider DN, equipped with the box topology. For each k,
let introduce L = [0, 1) and R = (0, 1]. Take cover by products of L’s and R’s. No finite subcover.

Theorem 24.7 (Tychono↵). Let X
i

6= ; for all i 2 I. Then
Y

i

X
i

is compact if and only if each

X
i

is compact.

We will prove this next time. Our proof, even for the di�cult direction, will use the axiom of
choice. In fact, Tychono↵’s theorem is equivalent to the axiom of choice.

Theorem 24.8. Tychono↵ ) axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let X
i

6= ; for all i 2 I.
We want to show that X =

Y

i

X
i

6= ;.

For each i, define Y
i

= X
i

[{1
i

}, where 1
i

/2 X
i

. We topologize Y
i

such that the only nontrivial
open sets are X

i

and {1
i

}. Now for each i, let U
i

= p�1

i

(1
i

). The collection U = {U
i

} gives a

collection of open subsets of Y =
Y

i

Y
i

, and this collection covers Y if and only if X = ;. Each Y
i

is compact since it has only four open sets. Thus Y must be compact by the Tychono↵ theorem.
But no finite subcollection of U can cover Y . For example, U

i

[U
j

does not cover Y since if a 2 X
i

and b 2 X
j

, then we can define (y
i

) 2 Y \ (U
i

[ U
j

) by

y
k

=

8

<

:

a k = i
b k = j

1
k

k 6= i, j

The same kind of argument will work for any finite collection of U
i

’s. Since U has no finite subcover
and Y is compact, U cannot cover Y , so that X must be nonempty. ⌅

25. Wed, Oct. 23

Started by correcting Example 24.6.
Here is a simpler example of a noncompact product in the box topology. Consider {0, 1}N. In

the box topology, this space is discrete. Since it is infinite, it is not compact.
It turns out that the Tychono↵ Theorem is equivalent to the axiom of choice. We will thus use

a form of the axiom of choice in order to prove it.

Zorn’s Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an
upper bound in P , then P contains at least one maximal element.

Theorem 25.1 (Tychono↵). Let X
i

6= ; for all i 2 I. Then
Y

i

X
i

is compact if and only if each

X
i

is compact.
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Proof. As we have seen a number of times, the implication ()) is trivial.

We now show the contrapositive of ((). Thus assume that X =
Y

i

X
i

is not compact. We wish

to conclude that one of the X
i

must be noncompact. By hypothesis, there exists an open cover U
of X with no finite subcover.

We first deal with the following case.

Special case: U is a cover by prebasis elements.
For each i 2 I, let U

i

be the collection

U
i

= {V ✓ X
i

open | p�1

i

(V ) 2 U}.
For some i, the collection U

i

must cover X
i

, since otherwise we could pick x
i

2 X
i

for each i with

x
i

not in the union of U
i

. Then the element (x
i

) 2
Y

i

X
i

would not be in U since it cannot be

in any p�1

i

(V ). Then U
i

cannot have a finite subcover, since that would provide a corresponding
subcover of U . It follows that X

i

is not compact.

It remains to show that we can always reduce to the cover-by-prebasis case.
Consider the collection N of open covers of X having no finite subcovers. By assumption, this

set is nonempty, and we can partially order N by inclusion of covers. Furthermore, if {U
↵

} is a
linearly order subset of N , then U =

S

↵

U
↵

is an open cover, and it cannot have a finite subcover
since a finite subcover of U would be a finite subcover of one of the U

↵

. Thus U is an upper bound
in N for {U

↵

}. By Zorn’s Lemma, N has a maximal element V.
Now let S ✓ V be the subcollection consisting of the prebasis elements in V. We claim that S

covers X. Suppose not. Thus let x 2 X such that x is not covered by S. Then x must be in V for
some V 2 V. By the definition of the product topology, x must have a basic open neighborhood in
B ⇢ V . But any basic open set is a finite intersection of prebasic open sets, so B = S

1

\ . . . S
k

. If
x is not covered by S, then none of the S

i

are in S. Thus V [ {S
i

} is not in N by maximality of
V. In other words, V [ {S

i

} has a finite subcover {V
i,1

, . . . , V
i,n

i

, S
i

}. Let us write

V̂
i

= V
i,1

[ · · · [ V
i,n

i

.

Now

X =
\

i

⇣

S
i

[ V̂
i

⌘

✓
⇣

\

i

S
i

⌘

[
⇣

[

i

V̂
i

⌘

✓ V [
⇣

[

i

V̂
i

⌘

This shows that V has a finite subcover, which contradicts that V 2 N . We thus conclude that S
covers X using only prebasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite
subcover. This is a contradiction. ⌅
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