Math 654 - Algebraic Topology Homework 1 Fall 2015

1. Suppose that X is a topological group. If m is the multiplication of X, we can define a new operation m_* on $\pi_n(X)$ by the composition

$$S^n \xrightarrow{(\alpha,\beta)} X \times X \xrightarrow{m} X.$$

Use the Eckmann-Hilton argument to show that this operation agrees with the usual multiplication on $\pi_n(X)$.

- 2. Let *X* be a space. Show that the assignment $Y \mapsto X \times Y$ defines a functor **Top** \longrightarrow **Top**.
- 3. Let **Gp** denote the category of groups and homomorphisms, and let **Comm** denote the category of commutative rings and ring homomorphisms. Show that the assignment $R \mapsto Gl_n(R)$ defines a functor $Gl_n : \mathbf{Comm} \longrightarrow \mathbf{Gp}$.
- 4. Let (X, \leq) be a poset.
 - (a) Define a category $\mathscr X$ in which each element of X defines an object of $\mathscr X$ and where

$$\mathscr{X}(x,y) = \left\{ \begin{array}{ll} \{*\} & x \leq y \\ \varnothing & x \not\leq y. \end{array} \right.$$

Show that this is a category.

(b) If *X* and *Y* are posets and $\mathscr X$ and $\mathscr Y$ are the associated categories, describe functors $\mathscr X \longrightarrow \mathscr Y$.