Math 654 - Algebraic Topology Homework 13 Fall 2015

- 1. In this problem, cohomology means singular cohomology, and $C^*(X)$ means singular cochains. Note that $C_*(X)$ is the free abelian group on the set of paths in X, so that $C^*(X; M)$ is the group of M-valued functions on the set of paths in X.
 - (a) Show that if $\varphi \in C^1(X; M)$ is a cocyle, then $\varphi(g * f) = \varphi(g) + \varphi(f)$, where g * f is path-composition. (Assume *f* and *g* are composable paths.)
 - (b) Show that $\varphi(f) = \varphi(g)$ if $f \simeq_p g$.
 - (c) Show that the above gives a well-defined homomorphism $H^1(X; M) \longrightarrow Hom(\pi_1(X), M)$. Explain why the Universal Coefficients theorem tells you these groups are isomorphic if X is path-connected.
- 2. Recall that \mathbb{RP}^2 is a Moore space of type $M(\mathbb{Z}/2\mathbb{Z}, 1)$. We showed in class that

$$\mathrm{H}^*(\mathbb{R}\mathbb{P}^2;\mathbf{F}_2)\cong\mathbf{F}_2[x_1]/x_1^3.$$

Show, on the other hand, that if *p* is odd then for $X = M(\mathbb{Z}/p\mathbb{Z}, 1)$, we have $x_1^2 = 0$, where x_1 is any class in $H^1(X; \mathbf{F}_p) \cong \mathbf{F}_p$. (Hint: Use (graded)-commutativity.)

3. Compute the cohomology ring $H^*(K; \mathbf{F}_2)$, where *K* is the Klein bottle, using cup products in simplicial cohomology.