Math 654 - Algebraic Topology Homework 3 Fall 2015

1. Recall that the **cone** *CX* on a space *X* is defined by

$$CX = (X \times I)/(X \times 1).$$

Using the fact that $C\Delta^n \cong \Delta^{n+1}$, convince yourself that if X is a Δ -complex, then CX inherits the structure of a Δ -complex.

- (a) If *A* is a finite set, compute $H_*^{\Delta}(CA)$.
- (b) Compute $H_*^{\Delta}(CS^1)$.
- (c) Compute $H_*^{\Delta}(CS^2)$.
- (d) Compute $H_*^{\Delta}(CT^2)$.

What do you expect the answer to be in general?

- 2. (Reduced homology)
 - (a) What are the reduced (simplicial) homology groups of S^1 , S^2 , and S^3 ? Recall that the (unreduced) suspension of X is $SX = CX \cup_X CX$.
 - (b) What are the groups $\widetilde{H}_*^{\Delta}(ST^2)$?

In general, how do you expect $\widetilde{H}_*^{\Delta}(SX)$ to be related to $\widetilde{H}_*^{\Delta}(X)$?

- 3. If *X* and *Y* are Δ -complexes with basepoints given by a choice of 0-simplex, then the wedge $X \vee Y$ inherits a Δ -complex structure.
 - (a) Find the reduced homology groups $\widetilde{H}_*^{\Delta}(S^1 \vee S^1)$.
 - (b) Find the reduced homology groups $\widetilde{H}_*^{\Delta}(S^1 \vee S^2)$.