Math 654 - Algebraic Topology Homework 4 Fall 2015

- 1. Recall the functor $Gl_n : \mathbf{Comm} \to \mathbf{Gp}$ from HW1. When n = 1, this gives the functor $(-)^\times : \mathbf{Comm} \to \mathbf{Gp}$ which takes a commutative ring R and gives R^\times , the units (invertible elements) in R. Show that the determinant yields a natural transformation $\det : Gl_n \to (-)^\times$.
- 2. Let G be a group. Define a category \star_G which has a single object, \star , and such that $\operatorname{Hom}(\star,\star)=G$. The identity morphism and composition of morphisms are defined to be the identity element of the group and the group multiplication, respectively.
 - (a) Show that a *G*-set *X* is the same data as a functor $\mathcal{X} : \star_G \longrightarrow \mathbf{Set}$.
 - (b) Show that if X and Y are G-sets, then a G-equivariant function $f: X \longrightarrow Y$ corresponds precisely to a natural transformation of functors $\mathcal{X} \longrightarrow \mathcal{Y}$.
- 3. Let $\mathscr{I} = \{ \bullet \longrightarrow \bullet \}$ be the category with two objects and a single non-identity morphism. Describe the data involved in a natural transformation $\eta : F \Rightarrow G : \mathscr{I} \longrightarrow \mathscr{C}$.
- 4. Let $F: \mathscr{C} \longrightarrow \mathscr{D}$ be a functor. Let $G: \mathrm{Ob}(\mathscr{C}) \longrightarrow \mathrm{Ob}(\mathscr{D})$ be a function, and suppose given an isomorphism $\eta_C: F(C) \cong G(C)$ for each $C \in \mathscr{C}$. Show that there is a unique way to define G on morphisms of \mathscr{C} that makes $\{\eta_C\}$ a natural isomorphism.