Math 654 - Algebraic Topology Homework 6 Fall 2015

1.	Use the long exact sec	guence and excision to	compute $H_*(T^2)$	2), assuming $H_{1}(T^{2})$	$(2) \cong \mathbb{Z} \oplus \mathbb{Z}.$
		10101100 011101 0710101011 00	, ccrrb erec r -* (r	// 000000000000000000000000000000000000	, — — —

- 2. Show that if M is a surface, then the only possible values for $H_2(M)$ are 0 and \mathbb{Z} . Further show that if M is orientable of genus g, then $H_1(M)$ can be generated by 2g elements, while if M is nonorientable, then $H_1(M)$ can be generated by g elements.
- 3. \mathbb{RP}^3 can be built from \mathbb{RP}^2 by attaching a single 3-cell. If x denotes a point in the interior of the 3-cell, then $\mathbb{RP}^3 \{x\} \simeq \mathbb{RP}^2$. Use the long exact sequence and excision to compute $H_*(\mathbb{RP}^3)$.
- 4. \mathbb{CP}^n can be built from \mathbb{CP}^{n-1} by attaching a 2n-cell. (Recall that $\mathbb{CP}^1 \cong S^2$.) If x denotes a point in the interior of the 2n-cell, then $\mathbb{CP}^n \{x\} \simeq \mathbb{CP}^{n-1}$. Use the long exact sequence and excision to compute $H_*(\mathbb{CP}^n)$.