1. (4 points) Use the determinants to find the area of the parallelogram with vertices

$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 7 \end{pmatrix}$, and $\begin{pmatrix} 6 \\ 6 \end{pmatrix}$

None of the vertices are at the origin, so we first translate the shape by subtracting off $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. The new vertices are the origin and $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$, and $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$. It follows that the area is $\begin{vmatrix} 3 & -1 \\ 2 & 5 \end{vmatrix} = 15 + 2 = 17.$

area
$$= 17$$

- 2. (6 points) Determine whether the following sets of vectors are **subspaces** or not. Select either **S** for subspace or **N** for not a subspace.
 - (a) $\{(x, y, z) \mid x + y + z = 0\} \stackrel{?}{\subseteq} \mathbb{R}^3$ (b) $(x, y, z) \mid x + y + z = 0\} \stackrel{?}{\subseteq} \mathbb{R}^3$ (c) $(x, y, z) \mid x + y + z = 0\} \stackrel{?}{\subseteq} \mathbb{R}^3$ This is a nullspace.

(c)
$$\{(x, y, z) \mid x + y + z > 0\} \stackrel{?}{\subseteq} \mathbb{R}^3$$

S / (N) Does not contain **0**.

(e) {invertible matrices} $\stackrel{?}{\subseteq} M_{3\times 3}$

(b)
$$\{(x, y, z) \mid x + y + z = 2\} \stackrel{?}{\subseteq} \mathbb{R}^3$$

S / N

Does not contain 0.

(d) Span
$$\left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\3\\5 \end{pmatrix} \right\} \stackrel{?}{\subseteq} \mathbb{R}^3$$

(S) / N A span is always a subspace.