Math 322 - Matrix AlgebraSOLUTIONSFriday, December 4**Quiz 11

1. (4 **points**) Let $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$ and let $W = \text{Span } \mathcal{B}$. Find **p**, the orthogonal projection of $\mathbf{b} = \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$ onto W and also find the \mathcal{B} -coordinates of **p**.

We write \mathbf{u}_1 and \mathbf{u}_2 for the vectors in \mathcal{B} .

$$\mathbf{p} = \frac{\mathbf{u}_1 \cdot \mathbf{b}}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \mathbf{b}}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{6}{6} \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \frac{9}{3} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 4\\4\\-1 \end{pmatrix}$$
$$\mathbf{p} = \begin{pmatrix} 4\\4\\-1 \end{pmatrix}$$
$$\mathbf{p} = \begin{pmatrix} 4\\4\\-1 \end{pmatrix}$$
$$\mathbf{p} = \begin{pmatrix} 1\\3 \end{pmatrix}$$

Name:

2. (2 points) True/False. No justification required.
If W ⊆ ℝⁿ, y is a vector in ℝⁿ and p = proj_W(y) is the T / F projection of y onto W, then y - p is in W[⊥].

3. (a) (**3 points**) Find an orthogonal basis for the plane in \mathbb{R}^3 perpendicular to $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$.

Apply the Gram-Schmidt process to the basis $\left\{ \mathbf{u}_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -3\\0\\1 \end{pmatrix} \right\}$ from Quiz 10.

We take
$$\mathbf{v}_1 = \mathbf{u}_1$$
 and $\mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{pmatrix} -3\\0\\1 \end{pmatrix} - \frac{6}{5} \begin{pmatrix} -2\\1\\0 \end{pmatrix} \begin{vmatrix} \mathcal{B} \\ \mathcal{B} \\ \mathcal{B} \\ = \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3/5\\-6/5\\1 \end{pmatrix} \right\}$

(b) (**1 point**) Add a third vector to the two you found in part (a) to get an orthogonal basis for \mathbb{R}^3 .

$$\mathscr{B} = \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3/5\\-6/5\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$