Math 654 - Algebraic Topology Homework 1 Fall 2016

1. Suppose that *X* is a topological group. If *m* is the multiplication of *X*, we can define a new operation m_* on $\pi_n(X)$ by the composition

$$S^n \xrightarrow{(\alpha,\beta)} X \times X \xrightarrow{m} X.$$

Use the Eckmann-Hilton argument to show that this operation agrees with the usual multiplication on $\pi_n(X)$.

2. A **based space** is simply a space *X* with a chosen basepoint $x_0 \in X$. We say that a map $f : X \longrightarrow Y$ is based (or basepoint-preserving) if $f(x_0) = y_0$, where x_0 and y_0 are the chosen basepoints of *X* and *Y*, respectively.

Let (X, x_0) and (Y, y_0) be based spaces. We define their wedge sum to be

$$X \lor Y = X \coprod Y / \sim$$

where $\iota_X(x_0) \sim \iota_Y(y_0)$.

- (a) Show that the wedge sum satisfies the universal property of the coproduct for based spaces. That is, if $f : (X, x_0) \longrightarrow (Z, z_0)$ and $g : (Y, y_0) \longrightarrow (Z, z_0)$ are based maps, there is a *unique* continuous map $h : (X \lor Y, \overline{x_0}) \longrightarrow (Z, z_0)$ which makes the appropriate diagram commute.
- (b) Suppose that *W* is another based space satisfying the universal property described above. Show that *W* is homeomorphic to $X \lor Y$.
- 3. Let *X* be a space. Show that the assignment $Y \mapsto X \times Y$ defines a functor **Top** \longrightarrow **Top**.
- 4. Let **Gp** denote the category of groups and homomorphisms, and let **Comm** denote the category of commutative rings and ring homomorphisms. Show that the assignment $R \mapsto \operatorname{Gl}_n(R)$ defines a functor $\operatorname{Gl}_n : \operatorname{Comm} \longrightarrow \operatorname{Gp}$.