Math 654 - Algebraic Topology Homework 11 Fall 2016

1. (a) Let *X* and *Y* be CW complexes. Given an *n*-cell e^n_α of *X* and a *k*-cell e^k_β of *Y*, construct a map

$$\varphi_{\alpha,\beta}: S^{n+k-1} \longrightarrow (X^n \times Y^{k-1}) \cup (X^{n-1} \times Y^k)$$

that extends to

$$\Phi_{\alpha,\beta}: D^{n+k} \cong D^n \times D^k \stackrel{\Phi_{\alpha} \times \Phi_{\beta}}{\longrightarrow} X^n \times Y^k.$$

(Hint: It may help to use the model $S^{n+k-1} = \partial I^{n+k}$.) This construction can be used to provide $X \times Y$ with a CW structure in which cells correspond to pairs of cells in X and Y, respectively.

- (b) Starting from the minimal CW structure on S^1 , describe the CW structure on the torus $T^2 = S^1 \times S^1$ resulting from the above construction.
- (c) Show that if *X* and *Y* are finite CW complexes, then $\chi(X \times Y) = \chi(X)\chi(Y)$.
- 2. Use the above to write down the cellular chain complex for $X = \mathbb{RP}^2 \times \mathbb{RP}^2$, and use this to compute the homology with \mathbb{Z} and \mathbb{F}_2 coefficients.