
Math 654 - Algebraic Topology
Homework 8

Fall 2016

1. Given based spaces (X, x0) and (Y, y0), there is a natural axes inclusion X ∨ Y ↪→ X × Y.
Define the smash product of X and Y to be

X ∧Y = (X×Y)/(X ∨Y).

Show that there is a homeomorphism S1 ∧ S1 ∼= S2 or that more generally Sn ∧ Sk ∼= Sn+k.
(Hint: Feel free to assume the existence of a homeomorphism Dn ∼= In that takes the
boundary to the boundary.)

2. In the commutative diagram below, assume that the rows are exact, that f2 and f4 are
surjective, and that f5 is injective.
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Show that f3 is surjective.

3. Let h∗(−,−) be a homology theory. For any excisive triad (X; A, B), we have the map of
long exact sequences

. . . // Hn(A ∩ B)
jB //

jA
��

Hn(B)
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Use (only) this to build the Mayer-Vietoris sequence

. . . −→ Hn(A ∩ B)
(jA,jB)−−−→ Hn(A)⊕Hn(B)

iA−iB−−−→ Hn(X)
δ−→ Hn−1(A ∩ B) −→ . . .


