Math 551 - Topology I Homework 4 Fall 2017

- 1. Let $X = \mathbb{R}_{\text{cofinite}}$ be the real line equipped with the cofinite topology.
 - (a) Show that if $\{x_n\}$ is a sequence *with no repeated terms,* then $\{x_n\}$ converges to **every real number**.
 - (b) Show that the alternating sequence (1, -1, 1, -1, ...) does not converge.
 - (c) Show that the sequence (1,2,1,3,1,4,1,5,...) converges to 1.
- 2. (The line with doubled origin) Let $X = \mathbb{R} \cup \{0'\}$ with topology as follows: a subset $U \subseteq \mathbb{R}$ is open if it is open in the usual topology on \mathbb{R} . For a subset $V \subseteq X$ that contains the new origin 0', we declare it to be open if $(V \{0'\}) \cup \{0\}$ is open in \mathbb{R} . That is, we replace 0' by 0 and ask if that is open in the usual sense. Show that the sequence (1/n) converges to **both** 0 and 0'.
- 3. Consider the topology on \mathbb{R} given by the basis consisting of open intervals (a, ∞) .
 - (a) Given a subset $A \subseteq \mathbb{R}$, describe the closure \overline{A} in this topology.
 - (b) Consider the sequence $x_n = n$. Does it converge? If so, to what?
 - (c) Show that the sequence lemma holds in this topology. That is, if $x \in \overline{A}$, then some sequence in *A* converges to *x*.

This is an example of a non-Hausdorff space in which the sequence lemma holds.

- 4. Consider the generic point topology on a set *X*, with generic point $p \in X$.
 - (a) To which point(s) in *X* does the constant sequence $x_n = p$ converge?
 - (b) Now let x_n be a sequence in X which avoids, p, that is, $x_n \neq p$ for all n. To which point(s) in X does x_n converge?
- 5. Let *X* be Hausdorff, let $A \subseteq X$, and let *A*' denote the set of accumulation points of *A*. Show that *A*' is closed in *X*.