
Mon, Oct. 30

Proposition 17.15. Let X and Y be nonempty. Then X ⇥ Y is compact if and only if X and Y
are compact.

Proof. As for connectedness, the continuous projections makeX and Y compact ifX⇥Y is compact.
Now suppose that X and Y are compact and let U be an open cover. For each y 2 Y , the cover

U of X ⇥ Y certainly covers the slice X ⇥ {y}. This slice is homeomorphic to X and therefore
finitely-covered by some V ⇢ U . By the Tube Lemma, there is a neighborhood V

y

of y such that
the tube X ⇥ V

y

is covered by the same V. Now the V
y

’s cover Y , so we only need finitely many
of these to cover X. Since each tube is finitely covered by U and we can cover X ⇥ Y by finitely
many tubes, it follows that U has a finite subcover. ⌅

17.2. Compactness in Rn.

Theorem 17.16 (Heine-Borel). A subset A ✓ Rn is compact if and only if it is closed and bounded
(contained in a single metric ball).

Proof. Suppose A is compact. Then A must be closed in Rn since Rn is Hausdor↵. To see that A is
bounded, pick any point a 2 A (if A is empty, we are certainly done). Then the collection of balls
B

n

(a)\A gives an open cover of A, since any other point in A is a finite distance away from a. Since
A is compact, there must be a finite subcover {B

n1(a), . . . , Bn

k

(a)}. Let N = max{n
1

, . . . , n
k

}.
Then A ✓ B

N

(a).
On the other hand, suppose that A is closed and bounded in Rn. Since A is bounded, it is

contained in [�k, k]n for some k > 0. But this product of intervals is compact since each interval
is compact. Now A is a closed subset of a compact space, so it is compact. ⌅

In fact, the forward implication of the above proof works to show that

Proposition 17.17. Let A ✓ X, where X is metric and A is compact. Then A is closed and
bounded in X.

But the reverse implication is not true in general, as the next example shows.

Example 17.18. Consider [0,⇡]\Q ✓ Q. This is certainly closed and bounded, but we will see it
is not compact. Consider the open cover U =

�

[0,⇡ � 1

n

) \Q
 

n2N. This has no finite subcover.

Again, we have shown that compactness interacts well with finite products, and we would like
a similar result in the arbitrary product case. This is a major theorem, known as the Tychono↵
theorem. First, we show the theorem does not hold with the box topology.

Example 17.19. Consider X = {0, 1}N. In the box topology, this is discrete. Since this is infinite,
it cannot be compact.

Example 17.20. We have studied the orthogonal subgroups O(n) ✓ Gl
n

(R). The bigger group
Gl

n

(R) is not compact, as it is neither closed nor bounded in Rn

2
. However, the orthogonality

relations defining orthogonal matrices make this a closed subset of Rn

2
, and the fact that each

column has norm 1 means that an orthogonal n⇥n matrix, when considered as a point in Rn

2
, has

norm
p
n. In particular, O(n) is a bounded subset of Rn

2
.

17.3. Tychono↵ ’s Theorem.

Theorem 17.21 (Tychono↵). Let X
i

6= ; for all i 2 I. Then
Y

i

X
i

is compact if and only if each

X
i

is compact.
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Our proof, even for the di�cult direction, will use the axiom of choice. In fact, Tychono↵’s
theorem is equivalent to the axiom of choice.

Theorem 17.22. Tychono↵ ) axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let X
i

6= ; for all i 2 I.
We want to show that X =

Y

i

X
i

6= ;.

For each i, define Y
i

= X
i

[{1
i

}, where 1
i

/2 X
i

. We topologize Y
i

such that the only nontrivial
open sets are X

i

and {1
i

}. Now for each i, let U
i

= p�1

i

(1
i

). The collection U = {U
i

} gives a

collection of open subsets of Y =
Y

i

Y
i

, and this collection covers Y if and only if X = ;. Each Y
i

is compact since it has only four open sets. Thus Y must be compact by the Tychono↵ theorem.
But no finite subcollection of U can cover Y . For example, U

i

[U
j

does not cover Y since if a 2 X
i

and b 2 X
j

, then we can define (y
i

) 2 Y \ (U
i

[ U
j

) by

y
k

=

8

<

:

a k = i
b k = j

1
k

k 6= i, j

The same kind of argument will work for any finite collection of U
i

’s. Since U has no finite subcover
and Y is compact, U cannot cover Y , so that X must be nonempty. ⌅

Wed, Nov. 1

The Tychono↵ Theorem is equivalent to the axiom of choice. We will thus use a form of the
axiom of choice in order to prove it.

Zorn’s Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an
upper bound in P , then P contains at least one maximal element.

Theorem 17.23 (Tychono↵). Let X
i

6= ; for all i 2 I. Then
Y

i

X
i

is compact if and only if each

X
i

is compact.

Proof. As we have seen a number of times, the implication ()) is trivial.

We now show the contrapositive of ((). Thus assume that X =
Y

i

X
i

is not compact. We wish

to conclude that one of the X
i

must be noncompact. By hypothesis, there exists an open cover U
of X with no finite subcover.

We first deal with the following case.

Special case: U is a cover by prebasis elements.
For each i 2 I, let U

i

be the collection

U
i

= {V ✓ X
i

open | p�1

i

(V ) 2 U}.
For some i, the collection U

i

must cover X
i

, since otherwise we could pick x
i

2 X
i

for each i with

x
i

not in the union of U
i

. Then the element (x
i

) 2
Y

i

X
i

would not be in U since it cannot be

in any p�1

i

(V ). But now the cover U
i

cannot have a finite subcover, since that would provide a
corresponding subcover of U . It follows that X

i

is not compact.

It remains to show that we can always reduce to the cover-by-prebasis case.
Consider the collection N of open covers of X having no finite subcovers. By assumption, this

set is nonempty, and we can partially order N by inclusion of covers. Furthermore, if {U
↵

} is a
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linearly order subset of N , then U =
S

↵

U
↵

is an open cover, and it cannot have a finite subcover
since a finite subcover of U would be a finite subcover of one of the U

↵

. Thus U is an upper bound
in N for {U

↵

}. By Zorn’s Lemma, N has a maximal element V.
Now let S ✓ V be the subcollection consisting of the prebasis elements in V. We claim that S

covers X. Suppose not. Thus let x 2 X such that x is not covered by S. Then x must be in V for
some V 2 V. By the definition of the product topology, x must have a basic open neighborhood in
B ⇢ V . But any basic open set is a finite intersection of prebasic open sets, so B = S

1

\ . . . S
k

. If
x is not covered by S, then none of the S

i

are in S. Thus V [ {S
i

} is not in N by maximality of
V. In other words, V [ {S

i

} has a finite subcover {V
i,1

, . . . , V
i,n

i

, S
i

}. Let us write

V̂
i

= V
i,1

[ · · · [ V
i,n

i

.

Now

X =
\

i

⇣

S
i

[ V̂
i

⌘

✓
⇣

\

i

S
i

⌘

[
⇣

[

i

V̂
i

⌘

✓ V [
⇣

[

i

V̂
i

⌘

This shows that V has a finite subcover, which contradicts that V 2 N . We thus conclude that S
covers X using only prebasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite
subcover. This is a contradiction. ⌅

Fri, Nov. 3

Remark 17.24. There are other versions of compactness. For instance sequential compactness
is the condition that every sequence has a convergent subsequence. In a metric space, this turns
out to be equivalent to compactness, but not for general topological spaces.

17.4. Local Compactness.

Definition 17.25. We say that a space is locally compact if every x 2 X has a compact
neighborhood (recall that we do not require neighborhoods to be open).

This looks di↵erent from our other “local” notions. To get a statement in the form we expect,
we introduce more terminology A ✓ X is precompact if A is compact.

Proposition 17.26. Let X be Hausdor↵. TFAE

(1) X is locally compact
(2) every x 2 X has a precompact neighborhood
(3) X has a basis of precompact open sets

Proof. It is clear that (3) ) (2) ) (1) without the the Hausdor↵ assumption, so we show that
(1) ) (3). Suppose X is locally compact and Hausdor↵. Let V be open in X and let x 2 V . We
want a precompact open neighborhood of x in V . Since X is locally compact, we have a compact
neighborhood K of x, and since X is Hausdor↵, K must be closed. Since V and K are both
neighborhoods of x, so is V \K. Thus let x 2 U ✓ V \K. Then U ✓ K since K is closed, and U
is compact since it is a closed subset of a compact set. ⌅

In contrast to the local connectivity properties, it is clear that any compact space is locally
compact. But this is certainly a generalization of compactness, since any interval in R is locally
compact.

Example 17.27. A standard example of a space that is not locally compact is Q ✓ R. We show
that 0 does not have any compact neighborhoods . Let V be any neighborhood of 0. Then it must
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contain (�⇡/n,⇡/n) for some n. Now

U =

(

✓

� ⇡/n,

✓

k

k + 1

◆

⇡/n

◆

)

[
n

V \ (⇡/n,1), V \ (�1,�⇡/n)
o

is an open cover of V with no finite subcover.

Remark 17.28. Why did we define local compactness in a di↵erent way from local (path)-
connectedness? We could have defined locally connected to mean that every point has a connected
neighborhood , which follows from the actual definition. But then we would not have that locally
connected is equivalent to having a basis of connected open sets. On the other hand, we could try
the x 2 K ✓ U version of locally compact, but of course we don’t want to allow K = {x}, so the
next thing to require is x 2 V ✓ U , where V is precompact. As we showed in Prop 17.26, this is
equivalent to our definition of locally compact in the presence of the Hausdor↵ condition. Without
the Hausdor↵ condition, compactness does not behave quite how we expect.

18. Compactification

Locally compact Hausdor↵ spaces are a very nice class of spaces (almost as good as compact
Hausdor↵). In fact, any such space is close to a compact Hausdor↵ space.

Definition 18.1. A compactification of a noncompact space X is an embedding i : X ,! Y ,
where Y is compact and i(X) is dense.

We will typically work with Hausdor↵ spaces X, in which case we ask the compactification Y to
also be Hausdor↵.

Example 18.2. The open interval (0, 1) is not compact, but (0, 1) ,! [0, 1] is a compactification.
Note that the exponential map exp : (0, 1) �! S1 also gives a (di↵erent) compactification. The
topologist’s sine curve (HW 7.5) also gives a (much larger) compactification.
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