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Proposition 17.15. Let X and Y be nonempty. Then X XY is compact if and only if X and Y
are compact.

Proof. As for connectedness, the continuous projections make X and Y compact if X xY" is compact.

Now suppose that X and Y are compact and let U be an open cover. For each y € Y, the cover
U of X x Y certainly covers the slice X x {y}. This slice is homeomorphic to X and therefore
finitely-covered by some V C U. By the Tube Lemma, there is a neighborhood V), of y such that
the tube X x V,, is covered by the same V. Now the V,’s cover Y, so we only need finitely many
of these to cover X. Since each tube is finitely covered by U and we can cover X x Y by finitely
many tubes, it follows that I/ has a finite subcover. |

17.2. Compactness in R”.

Theorem 17.16 (Heine-Borel). A subset A C R™ is compact if and only if it is closed and bounded
(contained in a single metric ball).

Proof. Suppose A is compact. Then A must be closed in R" since R™ is Hausdorff. To see that A is
bounded, pick any point a € A (if A is empty, we are certainly done). Then the collection of balls
By, (a)N A gives an open cover of A, since any other point in A is a finite distance away from a. Since
A is compact, there must be a finite subcover {By,(a),...,By,(a)}. Let N = max{ny,...,ng}.
Then A C By(a).

On the other hand, suppose that A is closed and bounded in R™. Since A is bounded, it is
contained in [—k, k| for some k > 0. But this product of intervals is compact since each interval
is compact. Now A is a closed subset of a compact space, so it is compact. |

In fact, the forward implication of the above proof works to show that

Proposition 17.17. Let A C X, where X is metric and A is compact. Then A is closed and
bounded in X.

But the reverse implication is not true in general, as the next example shows.

Example 17.18. Consider [0, 7]NQ C Q. This is certainly closed and bounded, but we will see it
is not compact. Consider the open cover U = {[0, T — %) N Q}n eN" This has no finite subcover.

Again, we have shown that compactness interacts well with finite products, and we would like
a similar result in the arbitrary product case. This is a major theorem, known as the Tychonoff
theorem. First, we show the theorem does not hold with the box topology.

Example 17.19. Consider X = {0, 1}". In the box topology, this is discrete. Since this is infinite,
it cannot be compact.

Example 17.20. We have studied the orthogonal subgroups O(n) C Gi,(R). The bigger group
Gl,(R) is not compact, as it is neither closed nor bounded in R, However, the orthogonality
relations defining orthogonal matrices make this a closed subset of ]R”Q, and the fact that each
column has norm 1 means that an orthogonal n x n matrix, when considered as a point in R”Q, has
norm +/n. In particular, O(n) is a bounded subset of R™".

17.3. Tychonoff’s Theorem.

Theorem 17.21 (Tychonoff). Let X; # (0 for alli € Z. Then HXi is compact if and only if each

K3
X; 18 compact.
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Our proof, even for the difficult direction, will use the axiom of choice. In fact, Tychonoff’s
theorem is equivalent to the axiom of choice.

Theorem 17.22. Tychonoff = axiom of choice.

Proof. This argument is quite a bit simplier than the other implication. Let X; # ) for all i € Z.
We want to show that X = HXi # (.

i
For each 7, define Y; = X;U{00;}, where co; ¢ X;. We topologize Y; such that the only nontrivial
open sets are X; and {oo;}. Now for each i, let U; = pl-_l(ooi). The collection U = {U;} gives a

collection of open subsets of Y = H Y;, and this collection covers Y if and only if X = (). Each Y;

(2
is compact since it has only four open sets. Thus Y must be compact by the Tychonoff theorem.
But no finite subcollection of ¢ can cover Y. For example, U; UU; does not cover Y since if a € X
and b € X;, then we can define (y;) € Y\ (U; UUj) by

a k=1
=9 b k=7
ook k#1,]
The same kind of argument will work for any finite collection of U;’s. Since U has no finite subcover
and Y is compact, U cannot cover Y, so that X must be nonempty. [

Wed, Nov. 1

The Tychonoff Theorem is equivalent to the axiom of choice. We will thus use a form of the
axiom of choice in order to prove it.

Zorn’s Lemma. Let P be a partially-ordered set. If every linearly-ordered subset of P has an
upper bound in P, then P contains at least one maximal element.

Theorem 17.23 (Tychonoff). Let X; # (0 for alli € Z. Then HXi is compact if and only if each
i
X, 18 compact.
Proof. As we have seen a number of times, the implication (=) is trivial.
We now show the contrapositive of (<=). Thus assume that X = H X; is not compact. We wish

i
to conclude that one of the X; must be noncompact. By hypothesis, there exists an open cover U
of X with no finite subcover.
We first deal with the following case.

Special case: U is a cover by prebasis elements.
For each i € Z, let U; be the collection

U; ={V C X; open |p; (V) eU}.

For some i, the collection U; must cover X;, since otherwise we could pick z; € X; for each ¢ with
x; not in the union of U;. Then the element (z;) € HX,- would not be in U/ since it cannot be

K3
in any pi_l(V). But now the cover U; cannot have a finite subcover, since that would provide a
corresponding subcover of U. It follows that X; is not compact.

It remains to show that we can always reduce to the cover-by-prebasis case.
Consider the collection N of open covers of X having no finite subcovers. By assumption, this
set is nonempty, and we can partially order N by inclusion of covers. Furthermore, if {U,} is a
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linearly order subset of N, then U = |J, U, is an open cover, and it cannot have a finite subcover
since a finite subcover of & would be a finite subcover of one of the U,. Thus U is an upper bound
in NV for {U,}. By Zorn’s Lemma, N has a maximal element V.

Now let & C V be the subcollection consisting of the prebasis elements in V. We claim that S
covers X. Suppose not. Thus let x € X such that x is not covered by S. Then x must be in V for
some V € V. By the definition of the product topology, x must have a basic open neighborhood in
B C V. But any basic open set is a finite intersection of prebasic open sets, so B = S1N...S;. If
x is not covered by S, then none of the S; are in S. Thus V U {S;} is not in N by maximality of
V. In other words, V U {S;} has a finite subcover {V;1,...,Vin,,Si}. Let us write

Vi=VitU- UVig,.

X:O(Siuf/i) C (OSZ)UQZJVZ) CVU(LZJ‘Z-)

This shows that V has a finite subcover, which contradicts that V € A/. We thus conclude that S
covers X using only prebasis elements.

But now by the argument at the beginning of the proof, S, and therefore V as well, has a finite
subcover. This is a contradiction. |

Remark 17.24. There are other versions of compactness. For instance sequential compactness
is the condition that every sequence has a convergent subsequence. In a metric space, this turns
out to be equivalent to compactness, but not for general topological spaces.

17.4. Local Compactness.

Definition 17.25. We say that a space is locally compact if every x € X has a compact
neighborhood (recall that we do not require neighborhoods to be open).

This looks different from our other “local” notions. To get a statement in the form we expect,
we introduce more terminology A C X is precompact if A is compact.

Proposition 17.26. Let X be Hausdorff. TFAE

(1) X is locally compact
(2) every x € X has a precompact neighborhood
(3) X has a basis of precompact open sets

Proof. 1t is clear that (3) = (2) = (1) without the the Hausdorff assumption, so we show that
(1) = (3). Suppose X is locally compact and Hausdorff. Let V' be open in X and let x € V.. We
want a precompact open neighborhood of x in V. Since X is locally compact, we have a compact
neighborhood K of x, and since X is Hausdorff, K must be closed. Since V and K are both
neighborhoods of , sois VN K. Thuslet x € U C VN K. Then U C K since K is closed, and U
is compact since it is a closed subset of a compact set. |

In contrast to the local connectivity properties, it is clear that any compact space is locally
compact. But this is certainly a generalization of compactness, since any interval in R is locally
compact.

Example 17.27. A standard example of a space that is not locally compact is Q C R. We show
that 0 does not have any compact neighborhoods . Let V' be any neighborhood of 0. Then it must
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contain (—m/n,m/n) for some n. Now

U= { < —n/n, <1<:-k;1> 7r/n> } 0{V N (n/n,00),V N (o0, ~7/n)

is an open cover of V' with no finite subcover.

Remark 17.28. Why did we define local compactness in a different way from local (path)-
connectedness? We could have defined locally connected to mean that every point has a connected
neighborhood , which follows from the actual definition. But then we would not have that locally
connected is equivalent to having a basis of connected open sets. On the other hand, we could try
the z € K C U version of locally compact, but of course we don’t want to allow K = {z}, so the
next thing to require is x € V- C U, where V is precompact. As we showed in Prop 17.26, this is
equivalent to our definition of locally compact in the presence of the Hausdorff condition. Without
the Hausdorff condition, compactness does not behave quite how we expect.

18. COMPACTIFICATION

Locally compact Hausdorff spaces are a very nice class of spaces (almost as good as compact
Hausdorff). In fact, any such space is close to a compact Hausdorff space.

Definition 18.1. A compactification of a noncompact space X is an embedding ¢ : X — Y,
where Y is compact and i(X) is dense.

We will typically work with Hausdorff spaces X, in which case we ask the compactification Y to
also be Hausdorff.

Example 18.2. The open interval (0, 1) is not compact, but (0,1) < [0, 1] is a compactification.
Note that the exponential map exp : (0,1) — S also gives a (different) compactification. The
topologist’s sine curve (HW 7.5) also gives a (much larger) compactification.
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