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(Examples continued . . . )

Example 14.11. (Cylinder) On I⇥I, we impose the relation (0, y) ⇠ (1, y). The resulting quotient
space is a cylinder, which can be identified with S1 ⇥ I.

Example 14.12. (Möbius band) On I⇥I, we impose the relation (0, y) ⇠ (1, 1�y). The resulting
quotient space is the Möbius band M .

Example 14.13. (Torus) On I ⇥ I, we impose the relation (0, y) ⇠ (1, y) and also the relation
(x, 0) ⇠ (x, 1). The resulting quotient space is the torus T 2 = S1 ⇥ S1. We recognize this as the
product of two copies of example 14.8, but beware that in general a product of quotient maps need
not be a quotient map.

Example 14.14. (Real projective space) On Sn we impose the equivalence relation x ⇠ �x. The
resulting quotient space is known as n-dimensional real projective space and is denoted RPn.

Consider the case n = 1. We have the hemisphere inclusion I ,! S1 given by x 7! eix⇡. Then
the composition I ,! S1 ⇣ RP1 is a quotient map that simply identifies the boundary @I to a
point. In other words, this is example 14.8 from above, and we conclude that RP1 ⇠= S1. However,
the higher-dimensional versions of these spaces are certainly not homeomorphic. We will return to
this soon in Example 15.5.

Example 14.15. (Complex projective space) Consider S2n�1 as a subspace of Cn. We then have
the coordinate-wise multiplication by elements of S1 ⇠= U(1) on Cn. This multiplication restricts
to a multiplication on the subspace S2n�1, and we impose an equivalence relation (z

1

, . . . , z
n

) ⇠
(�z

0

, . . . ,�z
n

) for all � 2 S1. The resulting quotient space is the complex projective space CPn.

15. Topological Groups

A number of the examples above have secretly been examples of a more general construction,
namely the quotient under the action of a group.

Definition 15.1. A topological group is a based space (G, e) with a continuous multiplication
m : G⇥G �! G and inverse i : G �! G satisfying all of the usual axioms for a group.

Remark 15.2. Munkres requires all topological groups to satisfy the condition that points are
closed. We will not make this restriction, though the examples we will consider will all satisfy this.

Example 15.3. (1) Any group G can be considered as a topological group equipped with the
discrete topology. For instance, we have the cyclic groups Z and C

n

= Z/nZ.
(2) The real line R is a group under addition, This is a topological group because addition and

multiplication by �1 are both continuous. Note that here Z is at the same time both a
subspace and a subgroup. It is thus a topological subgroup.

(3) If we remove zero, we get the multiplicative group R⇥ = R \ {0} of real numbers.
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(4) Inside R⇥, we have the subgroup {1,�1} of order two.
(5) Rn is also a topological group under addition. In the case n = 2, we often think of this as

C.
(6) Again removing zero, we get the multiplicative group C⇥ = C \ {0} of complex numbers.
(7) Inside C⇥ we have the subgroup of complex numbers of norm 1, aka the circle group

S1 ⇠= U(1) = SO(2).
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(8) This last example suggests that matrix groups in general are good candidates. For instance,
we have the topological group Gl

n

(R). This is a subspace ofM
n

(R) ⇠= Rn

2
. The determinant

mapping det : M
n

(R) �! R is polynomial in the coe�cients and therefore continuous. The
general linear group is the complement of det�1(0). It follows that Gl

n

(R) is an open
subspace of Rn

2
.

(9) Inside Gl
n

(R), we have the closed subgroups Sl
n

(R), O(n), SO(n).

Let G be a topological group and fix some h 2 G. Define L
h

: G �! G by L
h

(g) = hg. This is
left multiplication by h. The definition of topological group implies that this is continuous, as L

h

is the composition

G
(h,id)���! G⇥G

m�! G.

Moreover, L
h

�1 is clearly inverse to L
h

and continuous by the same argument, so we conclude that
each L

h

is a homeomorphism. Since L
h

(e) = h, we conclude that neighborhoods around h look like
neighborhoods around e. Since h was arbitrary, we conclude that neighborhoods around one point
look like neighborhoods around any other point. This implies that a space like the unoin of the
coordinate axes in R2 cannot be given the structure of topological group, as neighborhoods around
the origin do not resemble neighborhoods around other points.

The main reason for studying topological groups is to consider their actions on spaces.

Definition 15.4. Let G be a topological group and X a space. A left action of G on X is a map
a : G ⇥ X �! X which is associative and unital. This means that a(g, a(h, x)) = a(gh, x) and
a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams

G⇥G⇥X
id⇥a //

m⇥id

✏✏

G⇥X

a

✏✏
G⇥X

a

// X

X
e,id //

id ##

G⇥X

a

✏✏
X.

It is common to write g · x or simply gx rather than a(g, x).
There is a similar notion of right action of G on X, given by a map X ⇥G �! X satisfying the

appropriate properties.
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Given an action of G on a space X, we define a relation on X by x ⇠ y if y = g · x for some g.

The equivalence classes are known as orbits of G in X, and the quotient of X by this relation is
typically written as X/G. Really, the notation X/G should be reserved for the quotient by a right
action of G on X, and the quotient by a left action should be G\X.

Example 15.5. (1) For any G, left multiplication gives an action of G on itself! This is a
transitive action, meaning that there is only one orbit, and the quotient G\G is just a
point.

Note that we saw above that, for each h 2 G, the map L
h

: G �! G is a homeomor-
phism. This generalizes to any action. For each g 2 G, the map a(g,�) : X �! X is a
homeomorphism.

(2) For any (topological) subgroup H  G, left multiplication by elements of H gives a left
action of H on G. Note that an orbit here is precisely a right coset Hg. The quotient is
H\G, the set of right cosets of H in G.

(3) Consider the subgroup Z  R. Since R is abelian, we don’t need to worry about about left
vs. right actions or left vs. right cosets. We then have the quotient R/Z, which is again a
topological group (again, R is abelian, so Z is normal).
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What is this group? Once again, consider the exponential map exp : R �! S1 given by
exp(x) = e2⇡ix. This is surjective, and it is a homomorphism since

exp(x+ y) = exp(x) exp(y).

The First Isomorphism Theorem in group theory tells us that S1 ⇠= R/ ker(exp), at least
as a group. The kernel is precisely Z  R, and it follows that S1 ⇠= R/Z as a group. To
see that this is also a homeomorphism, we need to know that exp : R �! S1 is a quotient
map, but this follows from our earlier verification that I �! S1 is a quotient. Another way
to think about this is that the universal property of the quotient gives us continuous maps
I/@I �! R/Z �! I/@I which are inverse to each other.

(4) Similarly, we can think of Zn acting on Rn, and the quotient is Rn/Zn ⇠= (S1)n = Tn.
(5) The group Gl(n) acts on Rn (just multiply a matrix with a vector), but this is not terribly

interesting, as there are only two orbits: the origin is a closed orbit, and the complement is
an open orbit. Thus the quotient space consists of a closed point and an open point.

(6) More interesting is the action of the subgroup O(n) on Rn. Using the fact that orthogonal
matrices preserve norms, it is not di�cult to see that the orbits are precisely the spheres
around the origin. We claim that the quotient is the space [0,1) (thought of as a subspace
of R).

To see this, consider the continuous surjection |� | : Rn �! [0,1). By considering how
this acts on open balls, you can show that this is an open map and therefore a quotient.
But the fibers of this map are precisely the spheres, so it follows that this is the quotient
induced by the above action of O(n).

(7) Let R⇥ act on Rn via scalar multiplication. This action preserves lines, and within each
line there are two orbits, one of which is the origin. Note that the only saturated open set
containing 0 is Rn, so the only neighborhood of 0 in the quotient is the entire space.

(8) Switching from n to n + 1 for convenience, we can remove that troublesome 0 and let R⇥

act on X
n+1

= Rn+1 \ {0}. Here the orbits are precisely the lines (with origin removed).
The quotient is RPn.

To see this, recall that we defined RPn as the quotient of Sn by the relation x ⇠ �x.
This is precisely the relation that arises from the action of the subgroup C

2

= {1,�1}  R⇥

on Sn ✓ Rn+1.

Now notice that the map Rn+1 \ {0} �! Sn ⇥ R
>0

given by x 7!
⇣

x

kxk , kxk
⌘

is a

homeomorphism. Next, note that we have an isomorphism R⇥ ⇠= C
2

⇥ R⇥
>0

. Thus the

quotient (Rn+1\{0})/R⇥ can be viewed as the two step quotient
⇣

(Sn�1⇥R
>0

)/R⇥
>0

)
⌘

/C
2

.

But (Rn�1 ⇥ R
>0

)/R⇥
>0

⇠= Sn�1, so we are done.
We can think of RPn in yet another way. Consider the following diagram:

Dn //

✏✏✏✏

Sn //

✏✏✏✏

Rn+1 \ {0}

✏✏✏✏

Dn/ ⇠ // Sn/C
2

// (Rn+1 \ {0})/R⇥

The map Dn �! Sn is the inclusion of a hemisphere. The relation on Dn is the relation
x ⇠ �x, but only allowed on the boundary @Dn. All maps on the bottom are continuous
bijections, and again we will see later that they are necessarily homeomorphisms.

Note that the relation we imposed on Dn does not come from an action of C
2

on Dn.
Let us write C

2

= h�i. We can try defining

� · x =

⇢

x x 2 Int(Dn)
�x x 2 @(Dn),
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where here the interior and boundary are taken in Sn. But this is not continuous, as the
convergent sequence

 

r

1� 1

n
, 0, . . . , 0,

r

1

n

!

! (1, 0, . . . , 0)

is taken by � to a convergent sequence, but the new limit is not �(1, 0, . . . , 0) =
(�1, 0, . . . , 0).
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