Math 654 - Algebraic Topology Homework 1 Fall 2019

1. Suppose that *X* is a topological group. If *m* is the multiplication of *X*, we can define a new operation m_* on $\pi_n(X)$ by the composition

$$S^n \xrightarrow{(\alpha,\beta)} X \times X \xrightarrow{m} X.$$

Use the Eckmann-Hilton argument to show that this operation agrees with the usual multiplication on $\pi_n(X)$.

- 2. Let *X* be a space. Show that the assignment $Y \mapsto X \times Y$ defines a functor **Top** $\xrightarrow{X \times -}$ **Top**.
- 3. Let **Gp** denote the category of groups and homomorphisms, and let **Comm** denote the category of commutative rings and ring homomorphisms. Show that the assignment $R \mapsto \operatorname{Gl}_n(R)$ defines a functor $\operatorname{Gl}_n : \operatorname{Comm} \longrightarrow \operatorname{Gp}$.
- 4. Let (X, \leq) be a poset.
 - (a) Define a category \mathscr{X} in which each element of X defines an object of \mathscr{X} and where

$$\mathscr{X}(x,y) = \begin{cases} \{*\} & x \leq y \\ \emptyset & x \leq y. \end{cases}$$

Show that this is a category.

(b) If X and Y are posets and \mathscr{X} and \mathscr{Y} are the associated categories, describe functors $\mathscr{X} \longrightarrow \mathscr{Y}$.