Math 654 - Algebraic Topology Homework 4 Fall 2019

- Recall the functor Gl_n : Comm → Gp from HW1. When n = 1, this gives the functor (-)[×] : Comm → Gp which takes a commutative ring R and gives R[×], the units (invertible elements) in R. Show that the determinant yields a natural transformation det : Gl_n → (-)[×].
- 2. Let *G* be a group. Define a category \star_G which has a single object, \star , and such that $Hom(\star, \star) = G$. The identity morphism and composition of morphisms are defined to be the identity element of the group and the group multiplication, respectively.
 - (a) Show that a *G*-set *X* is the same data as a functor $\mathcal{X} : \star_G \longrightarrow \mathbf{Set}$.
 - (b) Show that if *X* and *Y* are *G*-sets, then a *G*-equivariant function $f : X \longrightarrow Y$ corresponds precisely to a natural transformation of functors $\mathcal{X} \longrightarrow \mathcal{Y}$.
- 3. Let $\mathcal{I} = \{\bullet \longrightarrow \bullet\}$ be the category with two objects and a single non-identity morphism. Describe the data involved in a natural transformation $\eta : F \Rightarrow G : \mathcal{I} \longrightarrow \mathscr{C}$.
- 4. Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be a functor. Let $G : Ob(\mathscr{C}) \longrightarrow Ob(\mathscr{D})$ be a function, and suppose given an isomorphism $\eta_C : F(C) \cong G(C)$ for each $C \in \mathscr{C}$. Show that there is a unique way to define *G* on morphisms of \mathscr{C} that makes $\{\eta_C\}$ a natural isomorphism.