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1. INTRODUCTION

Mon, Aug. 26

The first algebraic tool that you learned about for distinguishing spaces is the fundamental
group π1(X). As you saw, this is already sufficient for distinguishing surfaces. But this tool has
several drawbacks:

(1) It fails to distinguish many spaces. For example, S2 and S3 are both simply-connected but
are not homotopy equivalent.

(2) It is in practice very difficult to calculate! You may be able to compute the group in terms of
giving a presentation (listing generators and relations), but this does not mean you under-
stand the group. Recall that in general given a group G with a given presentation, there is
no algorithm to determine whether a given word represents the trivial element. Of course,
for many particular group presentations there are perfectly good algorithms.

One remedy for (2) is to consider instead the abelianized fundamental group. As you saw before,
this also suffices for the classification of surfaces. This is great since abelian groups are much easier
to work with. For instance, we know that every finitely generated abelian group is a direct sum
of cyclic groups. On the other hand, this is a coarser invariant and therefore fails even harder to
distinguish spaces. With this tool, the torus S1 × S1 and the figure eight S1 ∨ S1 look the same.

One approach is to consider higher analogues of the fundamental group. Recall that the funda-
mental group is defined as

π1(X, x) ∼= [S1, (X, x)]∗,

where the brackets denote based homotopy classes of based maps. From this definition, it seems
reasonable to define

πn(X, x) ∼= [Sn, (X, x)]∗.

Note that in the case n = 0, based homotopy classes of maps from S0 = {−1, 1} correspond
precisely to unbased homotopy classes of maps from {−1} to X, so that π0(X, x) corresponds
precisely to the path-components of X.

When n = 1, we know we get a group, and we can ask what we get for n ≥ 2. Recall that the
group structure on π1(X, x) can be defined using the pinch map S1 −→ S1 ∨ S1 via

[S1, (X, x)]∗ × [S1, (X, x)]∗ // [S1, (X, x)]∗

(S1 α−→ X, S1 β−→ X) � //
(
S1 p−→ S1 ∨ S1 (α,β)−−→ X

)
[ We also spent some time reviewing the fact that the wedge sum serves as the “coproduct in the

category of based spaces”.]
We can try to do the same for the πn(X), starting from a pinch map for Sn. If we recall that

Sn ∼= (S1)∧n, then we see that pinching in each of the n coordinates leads to n different choices of
pinch maps. In fact, these all provide the same multiplication by the following result

Proposition 1.1 (Eckmann-Hilton Argument). Let X be a set with two binary operations, denoted ∗1
and ∗2, and a distinguished element e ∈ X, such that

(1) e is a unit element for both ∗1 and ∗2
(2) ∗1 and ∗2 satisfy the “interchange law”: for all w, x, y, z in X,

(w ∗1 x) ∗2 (y ∗1 z) = (w ∗2 y) ∗1 (x ∗2 z).

Then in fact ∗1 = ∗2 and this operation is both associative and commutative.
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Proof. We show that the operations agree and are commutative.

x ∗2 y = (x ∗1 e) ∗2 (e ∗1 y) = (x ∗2 e) ∗1 (e ∗2 y) = x ∗1 y

and
y ∗2 x = (e ∗1 y) ∗2 (x ∗1 e) = (e ∗2 x) ∗1 (y ∗2 e) = x ∗1 y.

These arguments are best visualized by thinking of ∗1 as a “horizontal” multiplication and ∗2
as a “vertical” multiplication. Then the interchange law says that you can either first multiply
horizontally and then vertically or in the other order, and you get the same answer. �

Applying the Eckmann-Hilton argument to the n-choices of pinch maps on πn(X) show that
this is an abelian group if n ≥ 2. The unit element is the constant map at the basepoint. To verify
the interchange law holds, for example when n = 2, it suffices to see that the diagram

(S1 ∨ S1) ∧ S1

id∧p

))
S2 ∼= S1 ∧ S1

p∧id
66

id∧p ((

(S1 ∨ S1) ∧ (S1 ∨ S1)
∼= // ∨

4 S2

S1 ∧ (S1 ∨ S1)

p∧id
55

commutes. But both composites along the sides of the diamond give p ∧ p, so we are done.

Wed, Aug. 28

Ok, great! We have a bunch of nice abelian groups πn(X). Can we compute these?
Back in Math 651, the first interesting example of a fundamental group was π1(S1) ∼= Z. In

fact, this generalizes to the statement that πn(Sn) ∼= Z (we may prove this later). You also saw
that π1(Sn) = 0 if n > 1, and this also generalizes to the statement πk(Sn) = 0 if n > k. So the
“interesting” cases are πn+k(Sn).

When n = 1, there turns out to be nothing here. In fact, covering space theory can be used to
show

Proposition 1.2. Let p : E −→ B be a covering map. Then p induces an isomorphism

p∗ : πn(E) −→ πn(B)

for all n ≥ 2.

We conclude that πn(S1) ∼= πn(R) = 0, since R is contractible.
The next example to try is π2+k(S2).

Example 1.3. For X = S2, it is known that

π1(S2) = 0, π2(S2) ∼= Z, π3(S2) ∼= Z π4(S2) ∼= π5(S2) ∼= Z/2Z, π6(S2) ∼= Z/12Z.

But these homotopy groups πn(S2) are only known up to n = 64, although it is known that (1)
they are all finite, except for π2(S2) and π3(S2), and (2) infinitely many are nonzero. This was
proved by J. P. Serre.

The situation is similar for the homotopy groups πk(Sn) in general. The homotopy groups of
spheres are in some sense the “holy grail” of algebraic topology. They are a major driving force
behind a great amount of research, though we know that we will never know all of the homotopy
groups.
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What this suggests is that if we try to use the homotopy groups πn(X) to distinguish spaces,
we are not likely to get very far. Calculating homotopy groups is hard!!

Instead, we want a simpler invariant, from the point of view of computation. This is where
homology enters the story.

Before we turn to homology, some language will be convenient. Last time, we discussed the fact
that the wedge X ∨ Y plays the role of the “coproduct” of X and Y in the setting of based spaces.
Here are some more examples

• In the setting of (unbased) spaces, the disjoint union X qY is the coproduct of X and Y.
• In the setting of sets, the disjoint union X qY again is the coproduct of X and Y.
• In the setting of vector spaces, the direct sum V ⊕W plays the role of coproduct.
• In the setting of groups and homomorphisms, the free product G ∗ H is the coproduct.

There is also a dual notion of a product. The product X × Y is the “universal example of an
object equipped with a pair of maps to X and Y.” More precisely, if W is any other such object, we
can expect to have a unique map filling in the diagram

X

W

qX
//

qY //

∃! f
// X×Y

pX

::

pY

$$
Y

Here are some examples:

• In the setting of sets, the cartesian product X×Y satisfies the universal property.
• In the setting of (unbased) spaces, the product X×Y (given the product topology) satisfies

this universal property.
• In the setting of based spaces, the product X×Y, equipped with basepoint (x0, y0), satisfies

the universal property.
• In the setting of vector spaces, the direct sum V ⊕W again plays the role of product.
• In the setting of groups, the direct product G× H is the product in the above sense.

Proposition 1.4. Suppose W is a space with continuous maps qX : W −→ X and qY : W −→ Y also
satisfying the property of the product. Then W is homeomorphic to X×Y.

Proof. The universal property for X×Y gives us a map f : W −→ X×Y.

X

W

qX
//

qY //

∃! f
// X×Y

pX

::

pY

$$
Y
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But W also has a universal property, so we get a map ϕ : X×Y −→W as well.

X

X×Y

pX
//

pY //

∃!ϕ
// W

qX

<<

qY

""
Y

Now make Pacman eat Pacman!

X

W

qX ..

qY 00

f
// X×Y

pX

66

pY

((

ϕ
// W

qX

>>

qY

  
Y

We have a big diagram, but if we ignore all dotted lines, there is an obvious horizontal map
W −→ W to fill in the diagram, namely the idW . Since the universal property guarantees that
there is a unique way to fill it in, we find that ϕ ◦ f = idW . Reversing the pacmen gives the other
equality f ◦ ϕ = idX×Y. In other words, f is a homeomorphism, and ϕ = f−1. �

This argument may seem strange the first time you see it, but it is a typical argument that applies
any time you define an object via a universal property. The argument shows that any two objects
satisfying the universal property must be “the same”.

2. CATEGORIES AND FUNCTORS

Before we delve into homology, we pause to introduce some convenient language that will
appear many times throughout this course (and throughout your mathematical careers!). This is
the language of categories, functors, and natural transformations.

Definition 2.1. A category C is a collection of “objects”, denoted Ob(C ), together with, for each
pair of objects X, Y ∈ Ob(C ), a set HomC (X, Y) of “morphisms” which satisfies the following:

• For each X, Y, Z ∈ Ob(C ), there is a “composition” function

◦ : HomC (Y, Z)×HomC (X, Y)→ HomC (X, Z).

We write g ◦ f or g f for ◦(g, f ).
• For each X ∈ Ob(C ) there exists an “identity morphism” idX ∈ HomC (X, X) such that
for any Y, Z ∈ Ob(C ) and f ∈ HomC (Y, X), g ∈ HomC (X, Z) we have

idX ◦ f = f and g ◦ idX = g.

• Composition is associative, i.e., h(g f ) = (hg) f .

Remark 2.1. We often write C (X, Y) for HomC (X, Y), and we often write X ∈ C for X ∈ Ob(C ).

Remark 2.2. A category C is called small if the collection Ob(C ) of objects forms a set.

Categories abound in mathematics. Here are just a few of the more common examples.

Example 2.2.
(1) Set: the objects are sets and the morphisms are functions.
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(2) FinSet: the objects are finite sets and morphisms are functions.
(3) Vectk, where k is a field: the objects are vector spaces over k and morphisms are k-linear

homomorphisms.
(4) Gp: the objects are groups and the morphisms are homomorphisms.
(5) AbGp: the objects are abelian groups and the morphisms are homomorphisms.
(6) Top: the objects are topological spaces and the morphisms are continuous maps.
(7) Top∗: the objects are based topological spaces (spaces with a distinguished base point) and

the morphisms are basepoint-preserving continuous maps.
(8) Ho(Top): the objects are topological spaces and the morphisms are homotopy classes of

maps.
(9) Ho(Top∗): the objects are based topological spaces and the morphisms are based homo-

topy classes of maps.

These are all “large” categories (many objects). Small categories also arise often, though in a
different way.

Example 2.3.
(10) • denotes a category with a single object and only an identity morphism.
(11) • −→ • denotes a category with two objects and one morphism connecting the two objects.
(12) • //

%%

•
��
•

denotes a category with three objects and two composable morphisms

(13) • // ((66 • denotes a category with two objects and three parallel morphisms.

We defined categories so that we could talk about functors.

Definition 2.4. Let C and D be two categories. A (covariant) functor F : C → D is the following
data: for each C ∈ C we have an object F(C) ∈ D , and for each arrow f ∈ HomC (C, C′) we have
an arrow F( f ) ∈ HomD (F(C), F(C′)) such that

F(idC) = idF(C) and F(g ◦ f ) = F(g) ◦ F( f ).

A contravariant functor F : C → D is a functor that reverses the directions of the morphisms.
If f : C −→ C′ is a morphism, then the contravariant functor F produces a morphism F( f ) :
F(C′) −→ F(C). We still require compatibility with composition, which now looks like F(g ◦ f ) =
F( f ) ◦ F(g).

Remark 2.3. If F : C → D is a covariant functor and f is an arrow in C , we often write f∗ for F( f ).
If F is contravariant, we write f ∗ for F( f ).

Fri, Aug. 30

Example 2.5.

(1) Functors {• −→ •} −→ Top are given exactly by diagrams of shape X
f−→ Y in Top.

(2) There is a functor Top −→ Ho(Top) (and similarly in the based context) which does noth-
ing on objects and which takes a map to its homotopy class.

(3) The fundamental group defines a functor π1 : Top∗ → Gp which assigns to a space X with
basepoint x the fundamental group π1(X, x). Given a basepoint-preserving map of based
spaces f : X → Y, the homomorphism f∗ : π1(X, x)→ π1(Y, f (x)) is defined by sending
the class of a loop α to the class of the loop f ◦ α. The formulas

(g ◦ f )∗ = g∗ ◦ f∗ and (idX)∗ = idπ1(X)
6



say that π1(−) is a functor. In fact, since the homomorphism f∗ only depends on the
homotopy class of f , this functor factors as

Top
π1 //

$$

Gp.

Ho(Top)
π1

::

(4) Abelianization defines a functor (−)ab : Gp −→ AbGp. On objects, this is G 7→ Gab. On
morphisms, suppose that ϕ : H −→ G is a homomorphism. Then ϕab : Hab −→ Gab is the
induced morphism, defined using the universal property of quotients as in the diagram

H

    

ϕ
// G // // Gab.

Hab

ϕab

<<

Here the functor axioms are that

(ϕ ◦ λ)ab = ϕab ◦ λab and (idG)ab = idGab .

(5) The free abelian group functor F : Set→ AbGp is defined on objects by

F(X) =
⊕
x∈X

Z.

An element of F(X) is a finite formal Z-linear combination of elements of X, and the group
operation is defined by(

∑
x∈X

nxx

)
+

(
∑

x∈X
mxx

)
:= ∑

x∈X
(nx + mx)x.

Given a function f : X → Y, F( f ) is defined by

F( f )

(
∑

x∈X
nxx

)
:= ∑

x∈X
nx f (x).

(6) Let G be a group. Then we can regard G as a category G with one object and whose
morphisms are the group elements. Then a functor F : G → Set is exactly the same data
as a G-set, i.e., a set with an action of G.

One concept that shows up in many branches of math is the notion of isomorphism. This is a
sign that it should have a “categorical” definition.

Definition 2.6. A morphism f : X −→ Y in a category C is called an isomorphism if there exists
a morphism g : Y −→ X such that f ◦ g = idY and g ◦ f = idX.

Example 2.7.
(1) In Set, an isomorphism is precisely a bijection.
(2) In Gp, an isomorphism is a (group) isomorphism.
(3) In Top, an isomorphism is a homeomorphism.
(4) In Ho(Top), an isomorphism is a homotopy equivalence.

What benefit do we draw from making the general categorical definition?
7



Proposition 2.8. Let F : C −→ D be a functor. If ϕ is an isomorphism in C , then F(ϕ) is an isomorphism
in D .

As an application, since we saw that the fundamental group construction factors as

Top −→ Ho(Top) −→ Gp,

we get that if a based map f is a homeomorphism, or even a homotopy equivalence, then f∗ is an
isomorphism on homotopy groups.

3. SIMPLICIAL HOMOLOGY

There are several variants of homology, as we will see. The versions that we will discuss are
simplicial homology, singular homology, and cellular homology. They each have advantages:

• Simplicial homology is often straightforward to compute, when it is defined. The tradeoff
is that it is only defined on simplicial complexes, which are spaces equipped with a fairly
rigid structure.
• Singular homology is defined on all spaces and defines a functor on Top, which makes it

useful for proving theorems. On the other hand, it is impractical to compute directly.
• Cellular homology is sometimes the easiest to compute, but again the input is limited, in

this case to CW complexes.

Wed, Sept. 04

Following Hatcher, we will start with “simplicial” homology. The input for this flavor of ho-
mology is what Hatcher calls a ∆-complex. ∆n is the usual notation for the standard n-simplex,
which can be defined as

∆n = {(t0, . . . , tn) ∈ Rn+1 |∑
i

ti = 1, ti ≥ 0}.

We will denote by vi ∈ ∆n the vertex defined by ti = 1 and tj = 0 if j 6= i. Note that each “facet” of
the simplex, in which we have restricted one of the coordinates to zero, is an (n− 1)-dimensional
simplex. More generally, if we set k of the coordinates equal to zero, we get a face which is an
(n− k)-dimensional simplex.

∆-complexes are obtained by gluing together simplices along faces. We will need to keep track
of orientations of simplices. In the standard n-simplex, we declare the ordering of vertices v0 ≤
v1 ≤ · · · ≤ vn. All gluings performed in constructing a ∆-complex are required to be orientation-
preserving identifications. Thus if we want to glue an edge of ∆2 to an edge of ∆4, we first note
the ordering of the vertices on each of the two edges, and we then glue together along the unique
order-preserving linear isomorphism between the two edges.

To match up with the notion of CW-complex that you saw in MA551/651, another way to view
∆-complexes is as a pushout (gluing)

äi äFi
∆ni ι //

äi p
��

äα ∆nα

��
äi ∆ni // X

Here, each Fi is a collection of ni-dimensional faces (of various simplices) to be glued together.
The variable i runs over all of the glueings to be done. The variable α runs over all of the (open)
simplices of X.

8



Remark 3.1. This is a more convenient generalization of simplicial complex. A simplicial complex
is also obtained by gluing together simplices, but there we require that each n-simplex has n + 1
distinct vertices and also that an n-simplex is uniquely specified by its vertices.

If you have not seen pushouts before, this is fancy (i.e. categorical) language for a glueing con-

struction. In general, the pushout of a pair of morphisms A
f−→ X and A

g−→ Y is a universal object
X ∪A Y equipped with compatible maps from X and Y in the sense of the following universal
property: given an object Z and maps as in the diagram, there exists a unique morphism h as in
the diagram:

A
g

//

f
��

Y

ιY
�� ϕ2

��

X
ιX //

ϕ1 ..

X ∪A Y
h

##
Z

Concretely, in topology this space is constructed as follows. Start with the set XqY and impose
the equivalence relation generated by f (a) ∼ g(a). Then X ∪A Y is defined to be (X q Y)/∼,
equipped with the quotient topology.

Two familiar examples are

Example 3.1.

(1) (Quotients) In the case that A
f−→ X is the inclusion of a subspace and Y = ∗, then the

pushout ∗ ∪A X is precisely the quotient X/A.
(2) (Attaching a disk) Let X be a space, and consider the case where g is the inclusion S1 ↪→ D2.

Then in the glueing, the boundary circle of D2 is glued to X according to the map f , but
the interior of D2 is untouched. So the space D2 ∪S1 X looks like X with a disk attached to
it.

Ok, now let’s look at some ∆-complexes.

Example 3.2.
(1) X = S1. This can be built as a ∆-complex by starting with a 1-simplex ∆1 and then iden-

tifying the two faces together. Note that this ∆-complex is not a simplicial complex. The
pushout diagram in this case would be

∆0 q ∆0 //

p
��

∆1

��
∆0 // S1.

(2) X = S1. Another choice is to start with two simplices ∆1 and glue them together end-to-
end. This is still not a simplicial complex, since the two 1-simplices have the same vertex
set. Here, the pushout diagram in this case would be

ä
2

ä
2

∆0 //

p

��

ä
2

∆1

��

ä
2

∆0 // S1.

9



(3) X = S1. To get a simplicial complex, we can start with three 1-simplices and glue together
end-to-end. Here, the pushout diagram in this case would be

ä
3

ä
2

∆0 //

p

��

ä
3

∆1

��

ä
3

∆0 // S1.

Let’s look at some surfaces.

Example 3.3.
(1) X = S2, the sphere. We can obtain S2 by glueing together two 2-simplices ∆2 {a, b, c} and
{x, y, z}. We first glue {a, c} to {x, z} to get a square. We then glue {a, b} to {x, y} and
{b, c} to {y, z}.

(2) X = S1 × S1, the torus. We can obtain T2 by glueing together two 2-simplices ∆2 {a, b, c}
and {x, y, z}. We first glue the edge {a, c} to the edge {x, z} to get a square. We then glue
{a, b} to {y, z}, and finally we glue {b, c} to {x, z}. This is not a simplicial complex, since
in the end we are left with a single vertex.

(3) X = RP2, the projective plane. We can also obtain this by glueing together 2-simplices
{a, b, c} and {x, y, z}. We first glue {a, b} to {x, y}. We then glue {b, c} to {x, z} and {a, c}
to {y, z}.

(4) X = K, the Klein bottle. We can also obtain this by glueing together 2-simplices {a, b, c}
and {x, y, z}. We first glue {a, b} to {x, z}. We then glue {a, c} to {y, z} and {b, c} to {x, y}.

3.1. The Simplicial Chain Complex. Given a ∆-complex X, let C∆
n (X) be the free abelian group

on the set of n-simplices of X. An element of C∆
n (X) is referred to as an (simplicial) n-chain on X.

Our goal is to assemble the C∆
n (X), as n varies, into a “chain complex”

. . . −→ C∆
3 (X) −→ C∆

2 (X) −→ C∆
1 (X) −→ C∆

0 (X).

To say that this is a chain complex just means that composing two successive maps in the sequence
gives 0. We wish to specify a homomorphism

∂n : C∆
n (X) −→ C∆

n−1(X).

Since C∆
n (X) is a free abelian group, the homomorphism ∂n is completely specified by its value on

each generator, namely each n-simplex. Let σ be an n-simplex of X. Note that, since we have a
chosen ordering of the vertices of σ, the n-simplex σ determines a unique order-preserving map
σ : ∆n −→ X, which restricts to an embedding of the open simplex.

There are n + 1 standard inclusions di : ∆n−1 ↪→ ∆n, given by inserting 0 in position i in ∆n.
Since no faces get collapsed down in the glueing performed to assemble X, composing σ with an
inclusion di gives an (n− 1)-simplex of X (where the ordering is inherited from that of σ).

Definition 3.4. The simplicial boundary homomorphism

∂n : C∆
n (X) −→ C∆

n−1(X)

is defined by

∂n(σ) =
n

∑
i=0

(−1)i[σ ◦ di].

Example 3.5.
10



(1) If σ is a 1-simplex (from v0 to v1), then

∂1(σ) = [σ ◦ d0]− [σ ◦ d1] = [v1]− [v0].

(2) If σ is a 2-simplex with vertices v0, v1, and v2, and edges e01, e02, and e12, then

∂2(σ) = [σ ◦ d0]− [σ ◦ d1] + [σ ◦ d2] = [e12]− [e02] + [e01]

The claim is that this defines a chain complex. The signs have been inserted into the definition
to make this work out.

Proposition 3.6. The boundary squares to zero, in the sense that ∂n−1 ◦ ∂n = 0.

Proof. We will use

Lemma 3.1. For i > j, the composite

∆n−2 dj
−→ ∆n−1 di

−→ ∆n is equal to the composite ∆n−2 di−1

−−→ ∆n−1 dj
−→ ∆n.

Consider the case i = 3, j = 1, n = 4. We have

d3(d1(t1, t2, t3)) = d3(t1, 0, t2, t3) = (t1, 0, t2, 0, t3) = d1(t1, t2, 0, t3) = d1(d2(t1, t2, t3)).

This argument generalizes.
For the proposition,

∂n−1

(
∂n(σ)

)
= ∂n−1

(
n

∑
i=0

(−1)i[σ ◦ di]

)

=
n

∑
i=0

(−1)i ∂n−1([σ ◦ di])

=
n

∑
i=0

(−1)i
n−1

∑
j=0

(−1)j[σ ◦ di ◦ dj]

=
n

∑
i=0

∑
j<i

(−1)i(−1)j[σ ◦ di ◦ dj] +
n

∑
i=0

∑
j≥i

(−1)i(−1)j[σ ◦ di ◦ dj]

(changing bounds) =
n

∑
i=1

∑
j<i

(−1)i(−1)j[σ ◦ di ◦ dj] +
n−1

∑
i=0

∑
j≥i

(−1)i(−1)j[σ ◦ di ◦ dj]

(Lemma) =
n

∑
i=1

∑
j<i

(−1)i(−1)j[σ ◦ dj ◦ di−1] +
n−1

∑
i=0

∑
j≥i

(−1)i(−1)j[σ ◦ di ◦ dj]

= −
n−1

∑
j=0

∑
i−1≥j

(−1)j(−1)i−1[σ ◦ di ◦ dj] +
n−1

∑
i=0

∑
j≥i

(−1)i(−1)j[σ ◦ di ◦ dj]

= 0.

�

We have shown that any two successive simplicial boundary homomorphisms compose to zero,
so that we have a chain complex. What do we do with a chain complex? Take homology!

Definition 3.7. If
. . . −→ Cn+1

∂n+1−−→ Cn
∂n−→ . . .

is a chain complex, then we define the nth homology group Hn(C∗, ∂∗) to be

Hn(C∗, ∂∗) := ker ∂n/ im ∂n+1.
11



Note that the fact that ∂n ◦ ∂n+1 = 0 implies that im ∂n+1 is a subgroup of ker ∂n, so that the
definition makes sense. Recall that a complex (C∗, ∂∗) is said to be exact at Cn if we have equality
ker ∂n = im ∂n+1. Thus the homology group Hn(C∗, ∂∗) “measures the failure of C∗ to be exact at
Cn.”

Definition 3.8. Given a ∆-complex X, we define the simplicial homology groups of X to be

H∆
n (X; Z) := Hn(C∆

∗ (X), ∂∗).

Note that we only defined the groups C∆
n (X) for n ≥ 0. For some purposes, it is convenient

to allow chain groups Cn for negative values of n, so we declare that C∆
n (X) = 0 for n < 0. This

means that ker ∂0 = C∆
0 (X), so that H∆

0 = C∆
0 (X)/ im ∂1 = coker(∂1). Similarly, if X has no

simplices above dimension n, then we see C∆
k (X) = 0 for k > n, which implies that H∆

k (X) = 0.
Also, ∂n+1 = 0, so that H∆

n (X) = ker ∂n.

Terminology: The group ker ∂n is also known as the group of n-cycles and sometimes written Zn.
The group im(∂n+1) is also known as the group of boundaries and sometimes written Bn.

Remark 3.2. It is worth noting that since each C∆
n (X) is free abelian and ker ∂n and im ∂n+1 are

both subgroups, they are necessarily also free abelian.

3.2. Examples.

Example 3.9. (1) Consider X = S1, built as a ∆-complex with a single 1-simplex e, whose two
vertices have been glued together. Thus we have a single 0-simplex. Our chain complex
looks like

C∆
1 (S

1)
∂1 // C∆

0 (S
1)

Z{e} Z{v}

The differential is given by ∂1(e) = [v]− [v] = 0. It follows that H∆
1 (S

1) = Z and H∆
0 (S

1) =
Z. Since all of the higher chain groups are zero, the same holds for the higher homology
groups H∆

n (S1).
(2) We had other constructions of S1 as a ∆-complex. Our second construction had two 1-

simplices e and f and two vertices x and y, with ∂(e) = [y]− [x] and ∂( f ) = [x]− [y]. Now
our chain complex looks like

C∆
1 (S

1)
∂1 // C∆

0 (S
1)

Z{e, f }(
−1 1
1 −1

)// Z{x, y}

Thus ker ∂1 = Z{e + f } and im ∂1 = Z{y− x}. It follows that H∆
1 (S

1) = Z and H∆
0 (S

1) =
Z.

Mon, Sept. 09

Remark 3.3. In general, homology groups can be computed by finding the Smith normal form
for the differentials. For example, in the second X = S1 case, the SNF for ∂1 is

(
1 0
0 0

)
from which

we read off that the kernel is 1-dimensional.
12



(3) X = S2. We built this as a ∆-complex by gluing together two 2-simplices z1 and z2 along
their boundaries. Our chain complex is

C∆
2 (S

2)
∂2 // C∆

1 (S
2)

∂1 // C∆
0 (S

2)

Z{z1, z2}  1 1
−1 −1
1 1


// Z{y1, y2, y3}−1 −1 0

1 0 −1
0 1 1


// Z{x1, x2, x3}

We see that the kernel of ∂2 is Z{z1 − z2}, so that H∆
2 (S

2) ∼= Z.
The image of ∂2 is Z{y1 − y2 + y3}, which is also seen to be the kernel of ∂1. Thus

H∆
1 (S

2) = 0.
The third column of ∂1 is the difference of the first two, so that the image of ∂1 is Z{x2−

x1, x3 − x1}. It follows that

H∆
0 (S

2) = Z{x1, x2, x3}/〈x2 − x1, x3 − x1〉 ∼= Z{x1}.

(4) X = T2. The torus was similarly built by gluing two 2-
simplices. The chain complex we obtain from our gluing
data pictured to the right is

y1 y1

y3

y2

y3

z1

z2

C∆
2 (T

2)
∂2 // C∆

1 (T
2)

∂1 // C∆
0 (T

2)

Z{z1, z2}  1 1
−1 −1
1 1


// Z{y1, y2, y3}

(0 0 0)
// Z{x}

The ∂2 is the same as for S2, so we again find H2(T2) ∼= Z. But now ker ∂1 = Z{y1, y2, y3},
so that

H∆
1 (T

2) = Z{y1, y2, y3}/〈y1 − y2 + y3〉 ∼= Z{y1, y3}.

Since im ∂1 = 0, we see that H∆
0 (T

2) ∼= Z.

(5) X = RP2. The projective plane was built from two simplices
as in the picture to the right. This produces the chain com-
plex

y2 y2

y3

y1

y3

z1

z2

x2

x1

x1

x2

C∆
2 (RP2)

∂2 // C∆
1 (RP2)

∂1 // C∆
0 (RP2)

Z{z1, z2}  1 1
−1 1
1 −1


// Z{y1, y2, y3}(

0 −1 −1
0 1 1

) // Z{x1, x2}

In this case, ker ∂2 = 0, so that H∆
2 (RP2) = 0.

13



For H∆
1 , we see that ker ∂1 = Z{y1, y2− y3}. The image of ∂2 is Z{y1− y2 + y3, y1 + y2−

y + 3}. Thus the quotient is

H∆
1 (RP2) = Z{y1, y2 − y3}/〈y1 − y2 + y3, y1 + y2 − y3〉

∼= Z{y1}/〈2y1〉 ∼= Z/2Z.

Finally, the image of ∂1 is Z{x2 − x1}, so that

H∆
0 (RP2) ∼= Z{x1, x2}/〈x2 − x1〉 ∼= Z{x1}.

Wed, Sept. 11

3.3. Functoriality. Now that we have computed some examples, we want to develop the machine
some more, so that we don’t need to compute by hand every time. The first question we will
address is how homology behaves with respect to disjoint unions.

Proposition 3.10. Let X and Y be ∆-complexes. There is then a canonical ∆-complex structure on X tY,
and we have

H∆
n (X tY) ∼= H∆

n (X)⊕H∆
n (Y)

for all n.

Proof. The point is that we already have a direct sum decomposition on the level of chain com-
plexes. Namely, if we write ∆n(X) for the set of n-simplices of X, then

∆n(X tY) = ∆n(X) t ∆n(Y),

so that

C∆
n (X tY) = Z{∆n(X tY)} ∼= Z{∆n(X)} ⊕Z{∆n(Y)} = C∆

n (X)⊕ C∆
n (Y).

Moreover, the differential is compatible with this splitting, in the sense that we have the commu-
tative diagram

C∆
n (X tY)

∂n //

∼= ��

C∆
n−1(X tY)

∼=��
C∆

n (X)⊕ C∆
n (Y) ∂n⊕ ∂n

// C∆
n−1(X)⊕ C∆

n−1(Y)

This shows that H∆
n (X tY) ∼= H∆

n (X)⊕H∆
n (Y) for all n. �

Another way we might think of this result is that we have the two inclusions ιX : X ↪→ X t Y
and ιY : Y ↪→ X t Y. We might expect each of these maps to induce a map on homology, such as
H∗(ιX) : H∗(X) −→ H∗(X t Y), and that the isomorphism of Proposition 3.10 is simply the sum
H∗(ιX) + H∗(ιY). This raises the question:

Question 3.11. Is homology a functor?

The answer depends on how you interpret the question. So far, we have only defined homology
of ∆-complexes. So we can ask if each H∆

n defines a functor

H∆
n : ∆Top −→ AbGp

for some suitable category ∆Top of ∆-complexes. The morphisms in this category, which we will
call the ∆-maps, are maps satisfying the following condition: for each simplex σ : ∆n −→ X of X,

the composition ∆n σ−→ X
f−→ Y is an n-simplex of Y. Note that when we say “is an n-simplex”, we

also mean with its given orientation. Now by the definition of a ∆-map, f will induce a function

f̂ : ∆n(X) −→ ∆n(Y)
14



for each n and therefore also a homomorphism

f∗ : C∆
n (X) −→ C∆

n (Y)

for each n. We would like to say that this gives rise to homomorphisms on homology. In order to
conclude this, we need to know how f∗ interacts with the differential (boundary operator).

Note that if di : ∆n−1 ↪→ ∆n is the ith face inclusion, the composition with di induces a function
di : ∆n(X) −→ ∆n−1(X). Since di and f̂ are given by composition with di and f , respectively, we
conclude that the diagram

∆n(X)
f̂
//

di
��

∆n(Y)

di
��

∆n−1(X)
f̂
// ∆n−1(Y)

commutes for each n. This implies that the diagram

C∆
n (X)

f∗ //

di
��

C∆
n (Y)

di
��

C∆
n−1(X)

f∗
// C∆

n−1(Y)

commutes for each n. This is precisely the notion of a map of chain complexes.

Definition 3.12. Let (C∗, ∂C
∗ ) and (D∗, ∂D

∗ ) be chain complexes. Then a chain map f∗ : (C∗, ∂C
∗ ) −→

(D∗, ∂D
∗ ) is a sequence of homomorphisms fn : Cn −→ Dn, for each n, such that each diagram

Cn
fn //

∂C
n
��

Dn

∂D
n
��

Cn−1 fn−1

// Dn−1

commutes for each n.

We set up this definition in order to get

Proposition 3.13. A chain map f∗ : (C∗, ∂C
∗ ) −→ (D∗, ∂D

∗ ) induces homomorphisms fn :
Hn(C∗, ∂C

∗ ) −→ Hn(D∗, ∂D
∗ ) for each n.

Proof. Let x ∈ Cn be a cycle, meaning that ∂C(x) = 0. Then ∂D( fn(x)) = fn−1(∂
C(x)) = fn−1(0) =

0, so that fn(x) is a cycle in Dn. In order to get a well-defined map on homology, we need to
show that if x is in the image of ∂C

n+1, then fn(x) is in the image of ∂D
n+1. But if x = ∂C

n+1(y), then
fn(x) = fn(∂C

n+1(y)) = ∂D
n+1 fn+1(y), which shows that fn(x) is a boundary. �

There is an obvious way to compose chain maps, so that chain complexes and chain maps form
a category Ch≥0(Z).

Proposition 3.14. The assignment X 7→ (C∆
∗ (X), ∂∗) and f 7→ f∗ defines a functor

C∆
∗ : ∆Top −→ Ch≥0(Z).

15



Given the above discussion, it only remains to show that this construction takes identity mor-
phisms to identity morphisms and that it preserves composition. We leave this as an exercise.

Note that the sequence of homology groups Hn(C∗, ∂C
∗ ) of a chain complex is not quite a chain

complex, since there are no differentials between the homology groups. You can think of this as a
degenerate case of a chain complex, in which all differentials are zero. But it is more common to
simply call this a graded abelian group. If X∗ and Y∗ are graded abelian groups, then a graded
map f∗ : X∗ −→ Y∗ is simply a collection of homomorphisms fn : Xn −→ Yn. Graded maps
compose in the obvious way, so that we get a category GrAb of graded abelian groups. Then
Proposition 3.13 is the main step in proving

Proposition 3.15. Homology defines a functor

H∗ : Ch≥0(Z) −→ GrAb.

The composition of two functors is always a functor. Thus Proposition 3.14 and Proposition 3.15
combine to yield

Proposition 3.16. Simplicial homology defines a functor

H∆
∗ : ∆Top −→ GrAb.

This means that simplicial homology is a reasonably well-behaved construction.

Example 3.17. Consider the ∆-map depicted by the figure.

• •y x

e

f

•v

g

Note that there is a unique ∆-map compatible with these ∆-structures depicted. Calling the map
ϕ, we must have ϕ(e) = ϕ( f ) = g and ϕ(x) = ϕ(y) = v. The induced chain map is

Z{e, f }
(1 1) //

(
−1 1
1 −1

)
��

Z{g}

0
��

Z{x, y}
(1 1)

// Z{v}

We see that the induced map on homology Hi(S1) −→ Hi(S1) sends a generator to twice a gener-
ator when i = 1, but sends a generator to a generator when i = 0.

Still, the notion of ∆-map is quite restrictive. For instance, there is no ∆-map in the other di-
rection in the above example. Moreover, if X is a ∆-complex with at least one simplex that is
not 0-dimensional, then there is no ∆-map X −→ ∗. It would be great to have functoriality with
respect to a larger collection of maps between spaces.

There is another variant of homology that is more convenient when working with based spaces.
Thus let X be a ∆-complex, with a particular 0-simplex x0 identified as the basepoint. Then the
inclusion {x0} ↪→ X is a ∆-map, so that we get a well-defined homomorphism H∗({x0}) −→
H∗(X).

16



Definition 3.18. We define the reduced homology groups H̃∆
∗ (X) of (X, x0) to be the cokernel of

this map H∗({x0}) −→ H∗(X).

Fri, Sept. 13

Since Hn({x0}) = 0 if n > 0, the reduced homology groups are the same as the ordinary
homology groups, except in degree 0. We have simply reduced away the subgroup of H0(X)
generated by the basepoint. In fact, this subgroup is infinite. To see this, consider the chain maps

C∆
∗ ({x0})

ι∗−→ C∆
∗ (X)

ε−→ C∆
∗ ({x0}),

where ε0 is the homomorphism that sends every 0-simplex to the generator x0. To see that this
makes ε into a chain map, it suffices to see that

C∆
1 (X)

ε1 //

∂1
��

C∆
1 ({x0}) = 0

��
C∆

0 (X)
ε0
// C∆

0 ({x0}) = Z{x0}

commutes. But if e is a 1-simplex from v0 to v1, then ε∂1(e) = ε(v1 − v0) = x0 − x0 = 0 as desired.
Since ε ◦ ι∗ = idC∆({x0}), the same must be true after passage to homology (by Proposition 3.15),
giving a splitting

Z ∼= H∆
0 ({x0}) −→ H∆

0 (X) −→ H∆
0 ({x0}).

Thus we have
H∆

0 (X) ∼= H̃∆
0 (X)⊕Z.

Let us try to understand some of the homology group functors more closely.

Proposition 3.19. For any ∆-complex X, the group H∆
0 (X) is (isomorphic to) the free abelian group on the

set π0(X) of path components of X. In particular, for any path-connected space, this group is just Z.

Proof. Let X′ ⊆ X be the union of all 0-simplices and 1-simplices in X, and let ι : X′ ↪→ X be the
inclusion.

Lemma 3.2. The inclusion induces a bijection ι∗ : π0(X′) ∼= π0(X).

Proof. We define r : π0(X) −→ π0(X′) as follows: for any x ∈ X, pick a simplex σ containing
x. Then define r(x) to be the path-component in X′ of any point y lying in a 1-dimensional face
of σ. This does not depend on the choice of y since the union of the 1-dimensional faces of σ is
path-connected. It also does not depend on the choice of σ, since if σ′ is another such choice, then
σ ∩ σ′ is a simplex containing x, and we can pick our y from this intersection.

It is clear that r ◦ ι∗ is the identity on π0(X′). On the other hand, if x ∈ X then any representative
y for r(x) must lie in some simplex σ in X that also contains x. Since σ is path-connected, this
imples that ι ◦ r is the identity of π0(X). �

Note that the inclusion ι : X′ ↪→ X also induces isomorphisms C∆
i (X′) ∼= C∆

i (X) for i = 0, 1,
which is all that is relevant for calculation of H0. Thus, by the above lemma, we may without loss
of generality replace X by X′.

Recall that H∆
0 (X) = C∆

0 (X)/ im(∂1). Let p : ∆0(X) −→ π0(X) be the function that sends each
vertex of X to its path-component. This induces a homomorphism p∗ : C∆

0 (X) −→ Z{π0(X)},
since the free abelian group construction is a functor. If e ∈ ∆1(X) is a 1-simplex in X, then both
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endpoints of e lie in the same path component of X, since e is precisely a path from one endpoint to
the other. It follows that p∗(∂1(e)) = 0 in Z{π0(X)}. This shows that p∗ induces a homomorphism

p∗ : H∆
0 (X; Z) −→ Z{π0(X)}.

Note that each path-component of X must contain a vertex, since if x ∈ X, then x must lie in some
1-simplex σ of X. But there is a straight-line path in the simplex σ from x to either endpoint of σ,
showing that the vertex lies in the same path-component as x. This shows that p∗ is surjective.

Making a choice of 0-simplex in each path-component of X provides a function s : π0(X) −→
∆0(X) and therefore a function

s∗ : Z{π0(X)} −→ C∆
0 (X) � H0(X; Z).

It remains to show that the composition

H∆
0 (X; Z)

p∗−→ Z{π0(X)} s∗−→ H∆
0 (X; Z)

is the identity. For any 0-chain ∑i nixi in X, the composition produces the 0-chain ∑i nis(xi), so it
suffices to show these two 0-chains agree modulo the image of ∂1. It suffices to show that xi− s(xi)
is in the image of ∂1. But xi and s(xi) are both 0-simplices lying in the same component of X, so that
there must be a path between them which is a finite union of 1-simplices (since paths are compact).
Applying ∂1 to the corresponding finite sum of 1-simplices produces the difference xi − s(xi). �

Proposition 3.19 is not stated optimally, in the sense that it does not say to what extent this
depends on X. That is, both H0(−; Z) and Z{π0(−)} can be viewed as functors ∆Top −→ AbGp.
A stronger version of the proposition would say that these are isomorphic as functors. This brings
up the question of what should be the notion of a “morphism between functors”.

Mon, Sept. 16

3.4. Natural Transformations.

Definition 3.20. Let F, G : C → D be functors. A natural transformation η : F → G is a collection
of maps ηC : F(C) → G(C), one for each C ∈ C , such that for any C, C′ ∈ C and any f ∈
HomC (C, C′), the following diagram commutes:

F(C)
F( f )
//

ηC

��

F(C′)

ηC′
��

G(C)
G( f )
// G(C′)

The morphism ηC is sometimes called the component of η at the object C.

Example 3.21.

(1) We previously described abelianization as a functor (−)ab : Gp −→ AbGp. Now AbGp
includes in Gp as a subcategory, so we can think of abelianization as giving a functor
(−)ab : Gp −→ Gp. The identity functor IdGp : Gp −→ Gp is another functor with the
same domain and codomain. For any group G, the abelianization Gab is defined as a quo-
tient of G, so that there is a quotient homomorphism η : G −→ Gab. This homomorphism
is “natural in G”, in the sense that there is a natural transformation η : IdGp −→ (−)ab

18



whose components are ηG. In other words, for each group homomorphism ϕ : H −→ G,
the diagram

H
ϕ
//

ηH

��

G

ηG
��

Hab ϕab
// Gab

commutes. If you look back at Example 2.5(4), this was precisely the diagram used to
define the morphism ϕab.

(2) Recall that for any based ∆-complex (X, x0), we have a quotient homomorphism

H∆
n (X) −→ H̃∆

n (X, x0).

This is a natural transformation of functors ∆Top∗ −→ AbGp. In order to make sense of
this claim, we first need to discuss the functoriality of reduced homology. Let f : X −→ Y
be a based ∆-map. Then the induced map on reduced homology is defined to be the dashed
arrow coming from the universal property of the quotient:

H∆
n (x0) //

��

H∆
n (y0)

��
H∆

n (X)
f∗ //

��

H∆
n (Y)

��

H̃∆
n (X, x0) f∗

// H̃∆
n (Y, y0).

Note the the commutativity of the bottom square is precisely the statement that the quo-
tient H∆

n −→ H̃∆
n is a natural transformation.

(3) Let k be a field. For any vector space V over k, we define the dual vector space

V∗ := Homk(V, k).

This is the vector space of linear functionals on V. In fact the assignment V 7→ V∗ deter-
mines a contravariant functor (−)∗ : Vectk → Vectk. Composing this functor with itself
gives a covariant functor (−)∗∗ : Vectk → Vectk which sends a vector space to its double
dual. Because we will need this below, we note that if φ : V −→ W is a linear map, then
the induced linear map φ∗∗ : V∗∗ −→W∗∗ is given by φ∗∗(X)(λ) = X(λ ◦ φ).

Now fix v ∈ V. We define a function evalv : V∗ → k by evalv(λ) = λ(v). This is in
fact k-linear and so determines an element of (V∗)∗. But now the assignment v 7→ evalv
can also be seen to be k-linear, so we have a homomorphism evalV : V → V∗∗. This map
is an isomorphism if V is finite dimensional. Moreover, the homomorphisms V → V∗∗ fit
together to determine a natural transformation of functors Id→ (−)∗∗. Again, this means
that for every linear map φ : V −→W, the diagram

V
φ
//

evalV
��

W

evalW
��

V∗∗
φ∗∗
// W∗∗

commutes. To see this, let λ : W −→ k be an element of W∗. Then

[evalW ◦ φ](v)(λ) = λ(φ(v)) = evalV(v)(λ ◦ φ) = φ∗∗(evalV(v))(λ) = [φ∗∗ ◦ evalV ](v)(λ)
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This is a precise version of the statement that a finite-dimensional vector space is canonically
isomorphic to its double dual.

Remark 3.4. For finite-dimensional vector spaces, it is also true that V is isomorphic to V∗, but to
construct such an isomorphism one must first choose a basis for V. Thus the isomorphism V ∼= V∗
cannot be natural.

Wed, Sept. 18

We saw that if we restrict ourselves to (Vectk)f.d., then eval determines a natural transformation
Id → (−)∗∗ in which each component V → V∗∗ is an isomorphism. More generally, a natural
transformation η : F → G between functors F, G : C → D is called a natural isomorphism if
ηC : F(C) → G(C) is an isomorphism for each C ∈ C . This is equivalent to asking that there be a
natural transformation δ : G −→ F such that δ ◦ η = idF and η ◦ δ = idG.

Proposition 3.22. The isomorphisms of Proposition 3.19 assemble together to yield a natural isomorphism
of functors H∆

0 (−; Z) ∼= Z{π0(−)}.

Proof. We must show that for each ∆-map of ∆-complexes f : X −→ Y, the square

H∆
0 (X; Z)

f∗ //

��

H∆
0 (Y; Z)

��
Z{π0(X)}

Z{π0( f )}
// Z{π0(Y)}

commutes. The vertical maps are induced by maps out of C∆
0 , so that it suffices to check that

C∆
0 (X; Z)

f∗ //

��

C∆
0 (Y; Z)

��
Z{π0(X)}

Z{π0( f )}
// Z{π0(Y)}

commutes. Starting with a 0-chain ∑i nixi, either composition gives the element ∑i ni f (xi). �

We have now given a description of the functor H∆
0 (−; Z). What about H∆

1 (or higher homol-
ogy)? There is a nice answer for H1, but it is more convenient to address using a different model
for homology.

4. SINGULAR HOMOLOGY

Simplicial homology is great because, as we have seen, it is very computable. On the other
hand, it has the serious defect that it is only defined on ∆-complexes (and ∆-maps). We introduce
here a variant that is defined on all spaces.

The basic idea is this: in defining simplicial homology, we took the chains to be free abelian on
the set ∆n(X) of simplices of X, which we noted could be thought of as maps ∆n −→ X. If you
look at the formula for the differential, it only uses the formulation as maps from simplices to X.

Definition 4.1. Given a space X, define a singular n-simplex of X to be any continuous map
∆n −→ X. We define the group of singular n-chains on X to be

Cn(X) := Z{Top(∆n, X)}.
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We sometimes write Singn(X) := Top(∆n, X). Again, the formula for the differential in Defini-
tion 3.4 makes just as much sense in the singular context.

Definition 4.2. Given a space X, we define the singular homology groups of X to be the homology
groups of the chain complex (C∗(X), ∂).

If X is a ∆-complex, then any simplex of X may be thought of as a singular simplex. This gives
natural maps C∆

∗ (X) −→ C∗(X) of chain complexes and therefore natural maps of graded groups
H∆
∗ (X) −→ H∗(X). We will see later that these are isomorphisms.
Notice that the groups C∗(X) are much bigger than the groups C∆

∗ (X). For a ∆-complex with
finitely many simplices, the latter groups all have finite rank, whereas this is almost never the case
for the groups C∗(X).

Example 4.3. Consider X = ∗. Then Cn({∗}) = Z{Top(∆n, {∗})} ∼= Z for all n. The differential
∂n : Cn({∗}) −→ Cn−1({∗}) takes the (constant) singular n-simplex cn to the alternating sum

∑
i
(−1)icn−1 =

{
cn−1 n even
0 n odd .

In other words, the chain complex is

. . . 1−→ Z
0−→ Z

1−→ Z
0−→ Z,

so that the only nonzero homology group is H0(∗) ∼= Z.

But already for X = ∆1, the chain groups are infinite rank, and computing becomes impractical.
On the other hand, the singular homology groups have much better properties.

Proposition 4.4. Singular homology defines a functor

H∗ : Top −→ GrAb.

Proof. The proof strategy is the same as for Proposition 3.16. The main point is that, for any con-
tinuous map f : X −→ Y, composition with f defines a function f̂ : Singn(X) −→ Singn(Y). The
rest of the argument is the same. �

Fri, Sept. 20

This implies, for instance, that homeomorphic spaces have isomorphic singular homology
groups. But now that we’ve been given an inch, we want a whole yard. We will show that homol-
ogy factors through the homotopy category.

It is not true that the singular chains functors Cn(−) : Top −→ Ch≥0(Z) factor through the
homotopy category, so a new idea is needed, that of a chain homotopy between chain maps of
chain complexes.

Definition 4.5. Let f , g : C∗ ⇒ D∗ be chain maps. Then a chain
homotopy h is a sequence of homomorphisms hn : Cn −→ Dn+1

satisfying

∂D
n+1(hn(c)) + hn−1(∂

C
n c) = g(c)− f (c).

Cn+1

∂C
n+1
��

f
//

g
// Dn+1

∂D
n+1
��

Cn

∂C
n
��

hn

;;

f
//

g
// Dn

∂D
n
��

Cn−1

hn−1
;;

f
//

g
// Dn−1
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Remark 4.1. It is probably not apparent why this notion deserves the name “chain homotopy”. A
homotopy in topology means a map I × X −→ Y, and it turns out that there is a chain complex I∗
such that a chain homotopy in the sense given above is the same as a chain map I∗ ⊗ X∗ −→ Y∗,
where here ⊗means the tensor product of chain complexes.

Proposition 4.6. Let h : X × I −→ Y be a homotopy between f = h0 and g = h1. Then there exists a
chain homotopy hC

∗ between C∗( f ) and C∗(g).

We give the full proof below, but let’s first sketch it out in low dimensions. We start with n = 0.
If x ∈ X is a singular 0-simplex (in other words, a point), we define h0(x) := hx, the path in Y
traced out by the homotopy h at x. We then have

∂Y
1 (h0(x)) + h−1(∂

X
0 x) = hx(1)− hx(0) + 0 = g(x)− f (x)

as desired. Now we try n = 1. So let σ be a path in X, say from x to x′. Then h1(σ) should be a
linear combination of two-simplices in Y. On the path σ, the homotopy h traces out a square in Y,
which we can decompose into 2-simplices as in the picture

f (x) f (x′)

g(x) g(x′)

hx hx′

g(σ)

f (σ)

dh′′

h′

We then define h1(σ) = h′′ − h′ and check

∂Y
2 (h1(σ)) + h0(∂

X
1 σ) = ∂Y

2 (h
′′ − h′) + h0(x′ − x)

= g(σ)− d + hx − [hx′ − d + f (σ)] + hx′ − hx = g(σ)− f (σ)

as we wanted.

Proof. If σ is a singular n-simplex of X, then h gives the composite

∆n × I σ×id−−→ X× I h−→ Y.

Lemma 4.1. The product ∆n × I has a canonical ∆-complex structure with n + 1 (simplicial) (n + 1)-
simplices.

Proof. We sketch this structure for n = 1 and 2.

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0)
(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

Vertices of the simplices of ∆n × I are labelled by pairs (j, k), where 0 ≤ j ≤ n and 0 ≤ k ≤ 1.
The (n + 1)-simplices each include a single “vertical” 1-simplex with endpoints (i, 0) and (i, 1).
We denote by pi : ∆n+1 ↪→ ∆n × I the inclusion of the simplex which includes the vertical edge at
(i, 0). �
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We abuse notation and write pi(σ) for the composition

∆n+1 pi−→ ∆n × I σ×id−−→ X× I.

We then define

hC
n (σ) =

n

∑
i=0

(−1)ihpi(σ).

To verify that this is a chain homotopy as claimed, we make several observations:
(1) The ∆-complex ∆n × I has n “internal” n-simplices, with vertices

(0, 0), (1, 0), . . . , (i, 0), (i + 1, 1), . . . , (n, 1).

When calculating ∂n+1(hC
n (σ)), this n-simplex shows up as both pi(σ) ◦ di and pi+1(σ) ◦ di.

Since pi(σ) and pi+1(σ) appear with opposite signs in hC
n (σ), these two will cancel out in

∂n+1(hC
n (σ)).

Thus the only terms that remain in ∂n+1(hC
n (σ)) are the “external” n-simplices, which

contain a vertical edge, as well as the “horizontal” n-simplices g(σ) and f (σ).
(2) Each of the external n-simplices occurs as the face of a single n + 1-simplex and thus

appears only once in ∂n+1(hC
n (σ)). Moreover, each of these can be written in the form

pi(σ ◦ dj) and therefore appears in hC
n−1(∂n(σ)). In fact, every term of hC

n−1(∂n(σ)) arises in
this way.

�

Proposition 4.7. If f , g : C∗ ⇒ D∗ are chain-homotopic, then H∗( f ) = H∗(g).

Proof. It suffices to show that for any n-cycle c, the difference g(c) − f (c) is in the image
of the boundary map. But this comes directly from the definition of chain-homotopy, since
hn−1(∂

C
n (c)) = hn−1(0) = 0. �

Combining Proposition 4.6 and Proposition 4.7 gives

Proposition 4.8 (Homotopy invariance). If f , g : X ⇒ Y are homotopic, then H∗( f ) = H∗(g).

Corollary 4.9. If X ' Y, then H∗(X) ∼= H∗(Y).

So the homology of any contractible space agrees with the homology of a point. Said differently,
the reduced homology of any contractible space is zero.

4.1. Coefficients. Recall that when we originally introduced homology, we wrote H∗(X; Z). We
know how to let X vary, but the notation suggests that we should also be able to substitute for the
Z as well.

Definition 4.10. Given an abelian group M, we define the group of singular chains with coeffi-
cients in M to be

Cn(X; M) :=
⊕

∆sing
n (X)

M.

If you know about tensor products, another description of this is Cn(X; M) ∼= Cn(X)⊗Z M. The
singular homology groups with coefficients in M are then defined by

Hn(X; M) := Hn(C∗(X; M)).

Similarly, the simplicial homology groups with coefficients in M are defined by

H∆
n (X; M) := Hn(C∆

∗ (X; Z)⊗M).
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This simply means that when we write an n-chain as a linear combination ∑i niσi, each ni should
be in M rather than Z. The

The most common choices for M, other than Z, are the fields Q or R or C or Fp.

Example 4.11. X = S1. If we take the ∆-complex having a single 0-simplex and single 1-simplex,
then the chain complex with coefficients in M is just

C∆
1 (S

1; M)
∂1 // C∆

0 (S
1; M)

M{e} M{v},

where ∂1 = 0. It follows that H∆
1 (S

1; M) = M and H∆
0 (S

1; M) = M.

Mon, Sept. 23

A more interesting example is

Example 4.12. X = RP2, M = k is a field. The chain complex with coefficients in k is

C∆
2 (RP2)

∂2 // C∆
1 (RP2)

∂1 // C∆
0 (RP2)

k{z1, z2}  1 1
−1 1
1 −1


// k{y1, y2, y3} (

0 −1 −1
0 1 1

) // k{x1, x2}.

The Smith Normal Form that we previously found over Z gives a reduced echelon form over k.

The echelon form for ∂1 is
(

1 0 0
0 0 0

)
, but the Smith Normal Form

(
1 0
0 2
0 0

)
for ∂2 gives a reduced echelon

form of
(

1 0
0 1
0 0

)
if char(k) 6= 2 and

(
1 0
0 0
0 0

)
if char(k) = 2. Thus we read off the homology groups

H∆
0 (RP2; F2) ∼= F2, H∆

1 (RP2; F2) ∼= F2, H∆
2 (RP2; F2) ∼= F2

and
H∆

0 (RP2; k) ∼= k, H∆
1 (RP2; k) = 0, H∆

2 (RP2; k) = 0
if char(k) 6= 2.

For a given space X, the assignment M 7→ Hn(X; M) is functorial in M, meaning that any
homomorphism ϕ : M −→ N induces a homomorphism ϕ∗ : Hn(X; M) −→ Hn(X; N) by simply
applying ϕ to the coefficients in any n-chain in X. Even better, the homomorphisms ϕ∗ are natural
in X. But there is an even stronger connection between the Hn(X; M) as M varies.

Recall that a short exact sequence is a chain complex

0 −→ K i−→ M
q−→ Q −→ 0

that is exact (has no homology). Exactness at the three spots means
(1) ker(i) = 0, so that i is injective
(2) ker(q) = im(i), and
(3) im(q) = C, so that q is surjective.

A standard example is

0 −→ Z
p−→ Z −→ Z/pZ −→ 0.

The question is what does this short exact sequence of coefficients buy for us at the level of ho-
mology?
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Let’s first consider what happens at the level of chain complexes. The first observation is that
we get a short exact sequence of chain complexes

...

��

...

��

...

��
0 // Cn+1(X)

∂n+1
��

p
// Cn+1(X)

∂n+1
��

// Cn+1(X)/p //

∂n+1
��

0

0 // Cn(X)

∂n
��

p
// Cn(X)

∂n
��

// Cn(X)/p //

∂n
��

0

0 // Cn−1(X)

∂n−1 ��

p
// Cn−1(X)

∂n−1 ��

// Cn−1(X)/p //

∂n−1 ��

0

...
...

...

This means that each row is a short exact sequence and that moreover all squares in the above
diagram commute. (Note that the fact that each row is exact relies on the fact that each group
Cn(X) is free abelian.)

4.2. The Long Exact Sequence from a short exact sequence in coefficients.

Proposition 4.13. A short exact sequence 0 −→ A∗
i−→ B∗

q−→ C∗ −→ 0 of chain complexes induces a
long exact sequence in homology

. . . −→ Hn+1(C)
δ−→ Hn(A)

i∗−→ Hn(B)
q∗−→ Hn(C)

δ−→ Hn−1(A) −→ . . .

Proof. We start with the construction of the “connecting homomorphism δ”. Thus let c ∈ Cn be a
cycle. Choose a lift b ∈ Bn, meaning that q(b) = c. We then have q(∂n(b)) = ∂n(q(b)) = ∂n(c) = 0.
Since the rows are exact, we have ∂n(b) = i(a) for some unique a ∈ An−1, and we define

δ(c) := a.

b � //
_

��

c_

��
a � // ∂(b) � // 0

It remains to see how a depends on the choice of b. Thus let d ∈ ker(q), so that q(b + d) = c. By
exactness, we have d = i(e) for some e ∈ An. Then

i(a + ∂n(e)) = ∂n(b) + i(∂n(e)) = ∂n(b) + ∂n(i(e)) = ∂n(b) + ∂n(d) = ∂n(b + d),

so that δ(c) = a + ∂n(e) ∼ a. In other words, a specifies a well-defined homology class.
Since we want δ to be well-defined not only on cycles but also on homology, we need to show

that if c is a boundary, then δ(c) ∼ 0. Thus suppose c = ∂(c′). We can then choose b′ such that
q(b′) = c′. It follows that ∂(b′) would be a suitable choice for b. But then ∂(b) = ∂(∂(b′)) = 0, so
that δ(c) = 0.
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Exactness at B: First, we see that q∗ ◦ i∗ = 0 since this is already true at the chain level. Now
suppose that b ∈ ker(q∗). This means that q(b) = ∂(c) for some c ∈ Cn+1. Now choose a lift
d ∈ Bn+1 of c. Then we know

q(∂(d)) = ∂(q(d)) = ∂(c) = q(b).

In other words, q(b − ∂(d)) = 0, so that we must have b − ∂(d) = i(a) for some a. Since b ∼
b− ∂(d), we are done.

Exactness at C: We first show that δ ◦ q∗ = 0. Thus let b ∈ Bn be a cycle. We wish to show that
δ(q∗(b)) = 0. But the first step in constructing δ(q(b)) is to choose a lift for q(b), which we can of
course take to be b. Then ∂(b) = 0, so that a = 0 as well.

Now suppose that c ∈ Cn is a cycle that lives in the kernel of δ. This means that a = ∂(e) for
some e. But then b− i(e) is a cycle, and q(b− i(e)) = c, so c is in the image of q∗.

Exactness at A: First, we show that i∗ ◦ δ = 0. Let c ∈ Cn be a cycle. Then if δ(c) = a, then by
construction, we have i(a) = ∂(b) ∼ 0, so that i∗ ◦ δ = 0.

Finally, suppose that a ∈ An is a cycle that lives in ker i∗. Then i(a) = ∂(b) for some b, but then
a = δ(q(b)). �

Example 4.14. The short exact sequence 0 −→ Z
p−→ Z −→ Z/pZ −→ 0 gives rise to a short exact

sequence of chain complexes

0 −→ C∆
∗ (X)

p−→ C∆
∗ (X)

q∗−→ C∆
∗ (X)/p −→ 0

and therefore to a long exact sequence

. . . −→ H∆
n+1(X; Z/pZ)

δ−→ H∆
n (X; Z)

p−→ H∆
n (X; Z)

q∗−→ H∆
n (X; Z/pZ)

δ−→ H∆
n−1(X; Z) −→ . . .

Taking X = RP2, this long exact sequence takes the form

0 −→ H∆
2 (RP2; Z)

p−→ H∆
2 (RP2; Z)

q∗−→ H∆
2 (RP2; Z/pZ)

δ−→ H∆
1 (RP2; Z)

p−→ H∆
1 (RP2; Z)

q∗−→ H∆
1 (RP2; Z/pZ)

δ−→ H∆
0 (RP2; Z)

p−→ H∆
0 (RP2; Z)

q∗−→ H∆
0 (RP2; Z/pZ) −→ 0.

If p is odd, this sequence becomes

0 −→ 0
p−→ 0

q∗−→ H∆
2 (RP2; Z/pZ)

δ−→ Z/2Z
p−→ Z/2Z

q∗−→ H∆
1 (RP2; Z/pZ)

δ−→ Z
p−→ Z

q∗−→ H∆
0 (RP2; Z/pZ) −→ 0.

Since Z/2Z
p−→ Z/2Z is an isomorphism, we conclude that H∆

2 (RP2; Z/pZ) = 0 and
H∆

1 (RP2; Z/pZ) = 0. We also get that H∆
0 (RP2; Z/pZ) ∼= Z/pZ.

On the other hand, for p = 2, we get the sequence

0 −→ 0
p−→ 0

q∗−→ H∆
2 (RP2; Z/2Z)

δ−→ Z/2Z
2−→ Z/2Z

q∗−→ H∆
1 (RP2; Z/2Z)

δ−→ Z
2−→ Z

q∗−→ H∆
0 (RP2; Z/2Z) −→ 0.

Since Z/2Z
2−→ Z/2Z is zero, we get H∆

2 (RP2; Z/2Z) ∼= Z/2Z and Z/2Z ∼= H∆
1 (RP2; Z/2Z). We

also get H∆
0 (RP2; Z/2Z) ∼= Z/2Z as before.

The general result is

Theorem 4.15. Suppose that 0 −→ K −→ M −→ Q −→ 0 is a short exact sequence of abelian groups.
Then there is a long exact sequence

. . . −→ Hn(X; K) −→ Hn(X; M) −→ Hn(X; Q) −→ Hn−1(X; K) −→ . . .

Wed, Sept. 25
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4.3. The Long Exact Sequence for a subspace and Excision. Let A ⊆ X be a subspace. Define the
group of relative n-chains by

Cn(X, A) := Cn(X)/Cn(A).
More generally, for any choice of coefficients M we define

Cn(X, A; M) := Cn(X; M)/Cn(A; M).

Definition 4.16. Given A ⊆ X and an abelian group M, we define the relative homology groups
to be

Hn(X, A; M) := Hn(C∗(X, A)⊗M).

Given our discussion from above, we easily derive

Proposition 4.17. For any subspace A ⊆ X and abelian group M, there is a long exact sequence

. . . Hn(A; M)
i∗−→ Hn(X; M) −→ Hn(X, A; M)

δ−→ Hn−1(A; M) −→ . . .

Proof. We have a short exact sequence of chain complexes

0 −→ C∗(A; M) −→ C∗(X; M) −→ C∗(X, A; M) −→ 0.

The result is now a direct application of Proposition 4.13. �

Example 4.18. If (X, x0) is a based space, then we get a long exact sequence

. . . Hn(x0)
i∗−→ Hn(X) −→ Hn(X, x0)

δ−→ Hn−1(x0) −→ .

Moreover, the map p : X −→ x0 induces a splitting p∗ : Hn(X) −→ Hn(x0) to i∗. It follows that
each connecting homomorphism δ is zero, so that the long exact sequence breaks up into a bunch
of short exact sequences

0 −→ Hn(x0) −→ Hn(X) −→ Hn(X, x0) −→ 0.

Since reduced homology was defined to be the cokernel of i∗, we conclude that

H̃n(X) ∼= Hn(X, x0).

However, in general the long exact sequence is of limited use unless we can compute the relative
groups. One of the main tools for computing relative homology is the Excision Theorem.

Definition 4.19. An excisive triad is a triple (X; A, B), where A, B ⊆ X and X = Int(A) ∪ Int(B).

Theorem 4.20 (Excision). Let (X; A, B) be an excisive triad. Then the inclusion (A, A ∩ B) ↪→ (X, B)
induces an isomorphism

Hn(A, A ∩ B; M) ∼= Hn(X, B; M)

for any coefficient group M.

Example 4.21. We use the Excision Theorem to compute Hk(Sn). We write Sn as a union

Sn = Sn
+ ∪ Sn

−,

where Sn
+ and Sn

− are the upper and lower hemispheres (extended by a collar around the equator,
so that the equator lies in the interior of each). The intersection Sn

+ ∩ Sn
− is a thickened version of

the equator, but we simply write Sn−1, since these are homotopy equivalent. Now the long exact
sequence for the pair (Sn, Sn

−) takes the form

−→ Hk(Sn
−) −→ Hk(Sn) −→ Hk(Sn, Sn

−)
δ−→ Hk−1(Sn

−) −→ .

Since the hemisphere Sn
− is contractible, the outer two groups are zero if k ≥ 2. Thus

Hk(Sn) ∼= Hk(Sn, Sn
−) if k ≥ 2.
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In the case k = 1, this part of the sequence is

0 = H1(Sn
−) −→ H1(Sn) −→ H1(Sn, Sn

−)
δ−→ H0(Sn

−) −→ H0(Sn).

The rightmost map is an isomorphism Z ∼= Z, so that δ = 0. We conclude that H1(Sn) ∼=
H1(Sn, Sn

−).
Now excision gives Hk(Sn, Sn

−)
∼= Hk(Sn

+, Sn−1), and the long exact sequence for the pair
(Sn

+, Sn−1) is

−→ Hk(Sn
+) −→ Hk(Sn

+, Sn−1)
δ−→ Hk−1(Sn−1) −→ Hk−1(Sn

+) −→ .

Again, the hemisphere Sn
+ is contractible, so the outer two groups are zero if k ≥ 2. We have

shown that
Hk(Sn) ∼= Hk(Sn, Sn

−)
∼= Hk(Sn

+, Sn−1) ∼= Hk−1(Sn−1) if k ≥ 2.
If k = 1, this becomes

0 = H1(Sn
+) −→ H1(Sn

+, Sn−1)
δ−→ H0(Sn−1) −→ H0(Sn

+).

If n ≥ 2, then the right map is an isomorphism Z ∼= Z, so that H1(Sn) ∼= H1(Sn
+, Sn−1) = 0. The

other possible case is n = 1, in which case the right map is the fold map Z⊕Z −→ Z, so that
H1(S1) ∼= H1(S1

+, S0) is identified with the kernel of the fold map, which is isomorphic to Z.
Combining the above results, if k > n, then

Hk(Sn) ∼= Hk−1(Sn−1) ∼= . . . ∼= Hk−n+1(S1) = 0.

If k = n, we have
Hn(Sn) ∼= Hn−1(Sn−1) ∼= . . . ∼= H1(S1) ∼= Z.

If k < n, we have
Hk(Sn) ∼= Hk−1(Sn−1) ∼= . . . ∼= H1(Sn−k+1) ∼= 0.

In summary, if k, n ≥ 1, then

Hk(Sn) ∼=
{

Z k = n
0 k 6= n.

If we switch to reduced homology, the statement holds and extends to include the n = 0 case.

Fri, Sept. 27

4.4. CW complexes. The next example we will discuss is RP2. Recall that one model of RP2 is as
a quotient of D2 by the relation z ∼ −z on the boundary circle. Another way to express this is as
the pushout

S1 ι //

2
��

D2

����
S1 // RP2.

This is an example of what is known as a CW complex. In general, you start out with the 0-
skeleton X0, which is just a (discrete) set. You then form the 1-skeleton by attaching 1-cells via a
pushout

äα ∂D1 ι //

äα ϕα

��

äα D1

��
X0 // X1
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You then attach 2-cells similarly via a pushout:

äα ∂D2 ι //

äα ϕα

��

äα D2

��
X1 // X2

We will come back to this idea of a CW complex when discussing cellular homology.
Last time, we introduced the idea of a CW complex. Here are some examples:

(1) S1. There are many models. Two basic ones are (a) take a single 0-cell and a single 1-cell,
and (b) start with two 0-cells and attach two 1-cells.

(2) S2. The simplest model is to take a single 0-cell and a single 2-cell. Another option is to take
any CW structure on S1, and then attach a pair of 2-cells, which will become the northern
and southern hemispheres of S2.

(3) RP2. Recall that one model for this space was as the quotient of D2, where we imposed
the relation x ∼ −x on the boundary. If we restrict our attention to the boundary S1, then
the resulting quotient is RP1, which is again a circle. The quotient map q : S1 −→ S1 is
the map that winds twice around the circle. In complex coordinates, this would be z 7→ z2.
The above says that we can represent RP2 as the pushout

S1 ι //

q
����

D2

����
S1 // RP2

If we build the 1-skeleton S1 using a single 0-cell and a single 1-cell, then RP2 has a single
cell in dimensions ≤ 2.

(4) T2, the torus. We can start with a single 0-cell and a pair a and b of 1-cells. This yields a
1-skeleton which is S1 ∨ S1. We then attach a single 2-cell using the attaching map

S1 −→ S1 ∨ S1

specified as the element aba−1b−1 of π1(S1 ∨ S1).
(5) K, the Klein bottle. Just like the torus, we start with a 1-skeleton of S1 ∨ S1, but now we

attach the 2-cell using the attaching map aba−1b. My making the change of coordinates
d = a−1b, we can alternatively describe the attaching map in the form aadd.

(6) Mg, the orientable surface of genus g. This can be described as the connect sum of
g copies of T2. This has a CW structure with a single 0-cell and 2g 1-cells, labeled
{a1, . . . , ag, b1, . . . , bg}. Thus the 1-skeleton is a wedge of 2g circles. There is a single 2-
cell, attached via the product of commutators

[a1, b1] · [a2, b2] · · · · · [ag, bg].

(7) Ng, the nonorientable surface of genus g. This is the connect sum of g copies of RP2. This
can be given a CW structure with a single 0-cell and g 1-cells labelled {c1, . . . , cg}, so that
the 1-skeleton is a wedge of g circles. There is a single 2-cell, attached via the product

c2
1 · · · c2

g.

(8) RPn. We described RP2 above.
More generally, we can define RPn as a quotient of Dn by the relation x ∼ −x on the

boundary Sn−1. This quotient space of the boundary was our original definition of RPn−1.
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It follows that we can describe RPn as the pushout

Sn−1 ι //

q
����

Dn

����
RPn−1 // RPn

Thus RPn can be built as a CW complex with a single cell in each dimension ≤ n.

Mon, Sept 30
(9) CPn. Recall that CP1 ∼= S2. We can think of this as having a single 0-cell and a single

2-cell. We defined CP1 as the quotient of S3 by an action of S1 (thought of as U(1)). Let
η : S3 −→ CP1 be the quotient map. What space do we get by attaching a 4-cell to CP1 by
the map η? Well, the map η is a quotient, so the pushout CP1 ∪η D4 is a quotient of D4 by
the S1-action on the boundary.

Now include D4 into S5 ⊆ C3 via the map

ϕ(x1, x2, x3, x4) = (x1, x2, x3, x4,
√

1−∑ x2
i , 0).

(This would be a hemi-equator.) We have the diagonal U(1) action on S5. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ϕ meets
every S1-orbit in S5, and this inclusion induces a homeomorphism on orbit spaces

D4/U(1) ∼= S5/U(1) = CP2.

We have shown that CP2 has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CPn can be built as a CW complex

having a cell in each even dimension.

Example 4.22. X = RP2. Recall that we can build RP2 as a CW complex in which we start with a

single 1-cell and attach a 2-cell via the attaching map S1 2−→ S1.
Let x be a point in the interior of the attached 2-cell. Then RP2 − {x} deformation retracts onto

the 1-skeleton S1. Write U = RP2 − {x}, and let V be the interior of the 2-cell. Then U ∩ V =
V − {x} ' S1. The long exact sequence takes the form

−→ H2(U) −→ H2(RP2) −→ H2(RP2, U)
δ−→ H1(U) −→ H1(RP2) −→ H1(RP2, U)

δ−→ H0(U) −→ H0(RP2).

Since U ' S1, we know that Hk(U) = 0 for k ≥ 2, so that Hk(RP2) ∼= Hk(RP2, U) for all k ≥ 2.
We have previously identified H0(X) with Z{π0(X)}, so the last map is an isomorphism Z ∼= Z.
It follows that the last δ must be zero, so we can replace our sequence with

0 −→ H2(RP2) −→ H2(RP2, U)
δ−→ Z −→ H1(RP2) −→ H1(RP2, U) −→ 0.

We use excision to calculate these relative groups. Excision identifies the above relative groups
with the relative groups for (V, V ∩U) ' (D2, S1). These groups sit in a long exact sequence

H2(D2) −→ H2(D2, S1)
δ−→ H1(S1) −→ H1(D2) −→ H1(D2, S1)

δ−→ H0(S1) −→ H0(D2).

Since Hk(D2) and Hk(S1) both vanish for k ≥ 2, it follows that the relative groups vanish for k ≥ 3.
By the above, this shows that Hk(RP2) = 0 for k ≥ 3.

Wed, Oct 2

Next, we we identify the above sequence with

0 −→ H2(D2, S1)
δ−→ Z −→ 0 −→ H1(D2, S1)

δ−→ Z
∼=−→ Z.
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It follows that H2(D2, S1) ∼= Z and H1(D2, S1) ∼= 0. Plugging this back in above gives the exact
sequence

0 −→ H2(RP2) −→ Z
δ−→ Z −→ H1(RP2) −→ 0 −→ 0.

Now we cheat, and assume H1(RP2) ∼= Z/2Z. We will see later that this follows from the
Hurewicz theorem. This implies that δ must be multiplication by 2 and so H2(RP2) = 0.

I skipped the following discussion of the proof of Theorem 4.20.

In order to prove the excision theorem, we introduce a new chain complex: let CA,B
n (X) be

the free abelian group on (singular) n-simplices of X whose image lies entirely in either A or B.
This condition is preserved by the differential of C∗(X), so that CA,B

∗ (X) ⊆ C∗(X) is a sub-chain
complex.

Proposition 4.23. The inclusion CA,B
∗ (X) ↪→ C∗(X) is a chain homotopy equivalence.

Proof. We only give a brief indication. For a full (and lengthy) proof, see Prop 2.21 of Hatcher.
We need to define a homotopy inverse f : C∗(X) −→ CA,B

∗ (X). The idea is to use barycentric
subdivision. The subdivision of an n-simplex expresses it as the union of smaller n-simplices. By
the Lebesgue Number Lemma, repeated barycentric subdivision will eventually decompose any
singular n-simplex of X into a collection of n-simplices, each of which is either contained in A or
in B. This subdivision allows you to define a chain map f . You then show that subdivision of
simplices is chain-homotopic to the identity. �

Proof of Theorem 4.20. The chain homotopy equivalence CA,B
∗ (X) ' C∗(X) carries C∗(B) into itself,

so that we get a chain homotopy equivalence

CA,B
∗ (X)/C∗(B) ' C∗(X)/C∗(B).

But the inclusion C∗(A) ↪→ CA,B
∗ (X) induces an isomorphism

C∗(A)/C∗(A ∩ B) ∼= CA,B
∗ (X)/C∗(B),

since both quotients can be identified with the free abelian group on n-simplices in A that are not
entirely contained in B. These chain homotopy equivalences are carried over after tensoring with
M, which gives the theorem. �

Recall that, given a map f : A −→ X, the mapping cone C( f ) on f is defined to be

C( f ) := X ∪A C(A).

Proposition 4.24. In general, we have Hn(X, A) ∼= H̃n(C( f )), so that the long exact sequence may be
written

. . . Hn(A; M)
i∗−→ Hn(X; M) −→ H̃n(C( f ); M)

δ−→ Hn−1(A; M) −→ . . .

Proof. We write c for the cone point in C(A) ⊆ C( f ). Since C(A) ' ∗, we have H̃n(C( f )) ∼=
Hn(C( f ), C(A)). Excision then gives

Hn(C( f ), C(A)) ∼= Hn(C( f )− {c}, C(A)− {c}).
But we can deformation retract C( f )− {c} onto X and similarly C(A)− {c} onto A, so that the
latter relative homology group can be identified with Hn(X, A). �

In many “nice” situations, the cofiber C( f ) is homotopy equivalent to the quotient X/A. For
example, if A ⊆ X is a subcomplex of a CW complex, then this follows from [Hatcher, Prop. 0.17]
applied to the pair (C( f ), C(A)).
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Hatcher introduces a weaker notion, called “good pairs”. The precise definition of a good pair
(X, A) is that A is closed (and nonempty) and that there is a neighborhood A ⊆ U of A in X,
such that U deformation retracts onto A. The point is that this is enough [Hatcher, Prop 2.22] to
conclude that

H̃n(X/A) ∼= H̃n(C( f )) ∼= Hn(X, A).
In the case that A = x0 is a basepoint, we say that X is “well-based”.

Fri, Oct. 4

Proposition 4.25 (Suspension isomorphism). If X is a based space, then

H̃n(X) ∼= H̃n+1(SX),

where SX = CX ∪X CX is the (unreduced) suspension and we take one of the cone points as the basepoint.

Proof. Consider the pair (CX, X). The quotient C(X)/X is the (unreduced) suspension S(X), and
(CX, X) is a “good pair”. The long exact therefore takes the form

. . . −→ Hn+1(CX) −→ Hn+1(CX, X) ∼= H̃n+1(SX)
δ−→ Hn(X) −→ Hn(CX) −→ . . . .

Since the outer two groups are zero for n ≥ 1, we conclude that the connecting homomorphism is
an isomorphism. This gives what we wanted if n ≥ 1 since Hn(X) ∼= H̃n(X) for n ≥ 1.

In the case n = 0, H0(CX) ∼= Z, and the connecting homomorphism identifies H̃1(SX) with the
kernel of H0(X) −→ H0(CX), which is precisely the group H̃0(X). �

The unreduced suspension has no canonical basepoint, so the above result is usually stated
instead in terms of the reduced suspension.

Proposition 4.26 (Suspension isomorphism). If X is a well-based space, then

H̃n(X) ∼= H̃n+1(ΣX),

where ΣX = S1 ∧ X is the (reduced) suspension.

The reduced suspension is ΣX = SX/(I × {x0}). If X is well-based, then (SX, I × {x0}) is a
good pair, so that the reduced homology of the two versions of suspension are the same.

Proposition 4.27 (Wedge isomorphism). If {Xα}α∈A are based spaces, with “good” basepoints, then the
inclusions Xα ↪→ ∨

α Xα induce an isomorphism⊕
α

H̃n(Xα) ∼= H̃n(
∨
α

Xα).

Proof. We apply Proposition 4.24 with X = äα Xα and A = äα ∗. We have a long exact sequence

−→ Hn(A) −→ Hn(X) ∼=
⊕

α

Hn(Xα) −→ H̃n(
∨
α

Xα)
δ−→ Hn−1(A) −→ .

The outer two groups are zero if n ≥ 2, so that the middle map becomes an isomorphism. The
same conclusion holds when n = 1 since H0(A) −→ H0(X) is injective, so that the connecting
homomorphism must be zero. For n = 0, we get a short exact sequence

0 −→ H0(A) ∼=
⊕

α

Z −→ H0(X) ∼=
⊕

α

H0(Xα) −→ H̃0(
∨
α

Xα) −→ 0,

which gives the desired conclusion. �

Mon, Oct. 6
32



4.5. The Mayer-Vietoris sequence. It is sometimes convenient to combine the long exact se-
quence and excision into a different form. We give a chain-level argument here.

Let (X; A, B) be an excisive triad and recall that the group CA,B
n (X) defined in Proposition 4.23

is chain-homotopy equivalent to X.
We have a surjection ϕ : Cn(A) ⊕ Cn(B) −→ CA,B

n (X) given by ϕ(x, y) = x + y. The kernel
consists of pairs of the form (x,−x). But then x is a chain in both A and B, so it is a chain in A∩ B.
We conclude that we have a short exact sequence of chain complexes

0 −→ C∗(A ∩ B) κ−→ C∗(A)⊕ C∗(B)
ϕ−→ CA,B

∗ (X) −→ 0,

where κ(x) = (x,−x). Again, use of Proposition 4.13 gives rise to the Mayer-Vietoris long exact
sequence

. . . δ−→ Hn(A ∩ B)
(jA,−jB)−−−−→ Hn(A)⊕Hn(B)

iA+iB−−−→ Hn(X)
δ−→ Hn−1(A ∩ B) −→ . . . ,

where jA : A ∩ B −→ A, jB : A ∩ B −→ B, iA : A −→ X, and iB : B −→ X are the various
inclusions.

5. THE IDENTIFICATION OF SIMPLICIAL AND SINGULAR HOMOLOGY

If X is a ∆-complex, we can consider the chain complexes C∆
∗ (X) and C∗(X). In fact, there is

a natural map η : C∆
∗ (X) ↪→ C∗(X), which considers a simplex of X as a singular simplex. This

works just as well in the relative case, and we will prove

Theorem 5.1. Let X be a ∆-complex and A ⊆ X a sub-∆-complex. Then the chain map η induces an
isomorphism

H∆
n (X, A) ∼= Hn(X, A).

Proof. We only give the proof in the case that X is finite-dimensional and A = ∅. See [Hatcher,
Theorem 2.27] for the general case.

For each k ≥ 0, denote by skk(X) the k-skeleton of X, which is the union of all simplices of
dimension k or less. We will argue by induction on k that η : H∆

∗ (skk X) −→ H∗(skk X) is an
isomorphism. In the base case k = 0, this is clear since sk0 X is discrete and we know that both
versions of homology agree on discrete spaces.

For the induction step, the inclusion skk−1 X ↪→ skk X is a ∆-map, and we have a map of long
exact sequences

. . . // H∆
n+1(skk X, skk−1 X)

δ //

��

H∆
n (skk−1 X) //

��

H∆
n (skk X) //

��

H∆
n (skk X, skk−1 X) //

��

H∆
n−1(skk−1 X) //

��

. . .

. . . // Hn+1(skk X, skk−1 X)
δ // Hn(skk−1 X) // Hn(skk X) // Hn(skk X, skk−1 X) // Hn−1(skk−1 X) // . . .

We first argue that the vertical maps at the relative groups are isomorphisms. By defini-
tion, the simplicial relative homology groups are the homology groups of the chain complex
C∆
∗ (skk X)/C∆

∗ (skk−1 X). But this quotient group is trivial in every degree except for k, in which
case we have a free abelian group on the set of k-simplices of skk X. So this chain complex has
zero differential, and the relative homology groups are again just Z(∆k(skk X)), concentrated in
degree k.

For the relative singular groups, we have

Hn(skk X, skk−1 X) ∼= H̃n(skk X/ skk−1 X) ∼= H̃n(
∨

∆k(X)

Sk) ∼=
⊕

∆k(X)

H̃n(Sk) ∼=
{

Z{∆k(X)} k = n
0 k 6= n.
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So the relative groups agree, and the map η sends generators to generators, so the vertical maps
at the relative groups are isomorphisms.

Now for the induction step assume the vertical maps at skk−1 X are isomorphisms. The theorem
follows from the following important result from homological algebra:

Lemma 5.1 (5-lemma). If both rows in

A1

f1 ∼=
��

g1 // A2

f2 ∼=
��

g2 // A3

f3
��

g3 // A4

f4 ∼=
��

g4 // A5

f5 ∼=
��

B1 h1

// B2 h2

// B3 h3

// B4 h4

// B5

are exact and all fi except f3 are isomorphisms, then f3 is also an isomorphism.

Proof. We give the proof of injectivity. The proof of surjectivity is left as an exercise.
Suppose x ∈ A3 and f3(x) = 0. We wish to show that x = 0. Now f4(g3(x)) = h3( f3(x)) = 0.

Since f4 is injective, we know that g3(x) = 0. Thus x = g2(w), some w ∈ A2. Now h2( f2(w)) =
f3(g2(w)) = f3(x) = 0. It follows that f2(w) = h1(y), some y ∈ B1. Since f1 is surjective, there is
some z ∈ A1 with f1(z) = y.

z_
f1 ∼=
��

g1 // w_

f2 ∼=
��

� g2 // x_
f3

��

� g3// g3(x) = 0
_

f4 ∼=
��

g4 // A5

f5 ∼=
��

y �
h1

// f2(w) �
h2

// 0 �
h3

// 0
h4

// B5

Now f2(g1(z)) = h1( f1(z)) = h1(y) = f2(w). Since f2 is injective, it follows that g1(z) = w. But
then x = g2(w) = g2(g1(z)) = 0. �

�

5.1. The Eilenberg-Steenrod Axioms. By the category of pairs of CW complexes, we mean the
category in which the objects are a pair (X, A), where X is CW and A is a subcomplex, and a
morphism f : (X, A) −→ (Y, B) is a map f : X −→ Y such that f (A) ⊆ B.

Definition 5.2. A homology theory on CW complexes is a sequence of functors hn(X, A) on pairs
of CW complexes and natural transformations δ : hn(X, A) −→ hn−1(A, ∅) satisfying the follow-
ing axioms:

(1) (Homotopy) If f ' g, then f∗ = g∗
(2) (Long exact sequence) Writing hn(X) := hn(X, ∅), the sequence

. . . hn(A) −→ hn(X) −→ hn(X, A)
δ−→ hn−1(A) −→ . . .

is exact
(3) (Excision) If X is the union of subcomplexes A and B, then the inclusion (A, A ∩ B) ↪→

(X, B) induces an isomorphism

hn(A, A ∩ B) ∼= hn(X, B)

(4) (Additivity) If (X, A) is the disjoint union of pairs (Xi, Ai), then the inclusions (Xi, Ai) −→
(X, A) induce an isomorphism⊕

i

hn(Xi, Ai) ∼= hn(X, A).
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An ordinary homology theory is one that also satisfies the additional axiom
(5) (Dimension) hn(pt) = 0 if n 6= 0.

It turns out that if h is an ordinary homology theory and G := h0(pt, ∅), then hn(X, A) ∼=
Hn(X, A; G). In other words, singular homology is essentially the only ordinary homology theory.
There are many “extraordinary” homology theores (K-theory, bordism, stable homotopy . . . ) but
we will not study these in this course.

Wed, Oct. 9

5.2. Euler characteristic. The Euler characteristic χ started from the simple formula

χ(X) = V − E + F,

in the case of a 2-dimensional simplicial complex, where V, E, and F stand for the number of
vertices, edges, and faces, respectively. An arbitrary simplicial (or ∆-) complex can have simplices
of arbitrary dimension, and we can more generally define

χ(X) :=
∞

∑
i=0

(−1)i(number of i-simplices).

If we want to define the Euler characteristic to be a topological invariant, meaning that any two
homeomorphic simplicial complexes should have the same Euler characteristic, then you can al-
ready see why the alternating sum is a good idea: subdividing a simplex does not change the
above formula.

χ ( ) = χ ( ) = 1 and χ


 = χ


 = 1

We can also define an algebraic version. Recall that the rank of a finitely generated abelian
group is the rank of the free part. In other words, if A ∼= Zr ⊕ torsion, then rank(A) := r. This is
also the same as the dimension of the Q-vector space A⊗Z Q.

We also say that a chain complex C∗ of abelian groups is finite if each group Cn is finitely
generated and furthermore if only finitely many groups Cn are nonzero.

Definition 5.3. If C∗ is a finite chain complex, we define

χ(C∗) := ∑
i≥0

(−1)i rank(Ci).

Our goal will be to show

Proposition 5.4. Let C∗ be a finite chain complex. Then

χ(C∗) = χ(H∗(C∗)).

For this discussion, it will be convenient to use the language of tensor products.

Definition 5.5. Given abelian groups A and B, their tensor product is defined to be

A⊗ B := Z{a⊗ b | (a, b) ∈ A⊕ B}/∼,

where the relation is generated by

a1 ⊗ b + a2 ⊗ b ∼ (a1 + a2)⊗ b, and a⊗ b1 + a⊗ b2 ∼ a⊗ (b1 + b2).
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Example 5.6. Z⊗Z/nZ ∼= Z/nZ. The point is that

k⊗ ` ∼ k · (1⊗ `) ∼ k`(1⊗ 1),

so that the group is cyclic, and furthermore

n · (1⊗ 1) ∼ 1⊗ n = 1⊗ 0 ∼ 0(1⊗ 1) = 0.

More generally, Z⊗ A ∼= A for any A.

Example 5.7. Q⊗Z/nZ ∼= 0. The point is that for any rational number a
b , we have

a
b
⊗ k =

an
bn
⊗ k =

a
bn
⊗ kn =

a
bn
⊗ 0 = 0.

Even more useful than the construction of the tensor product given last time is the universal
property:

Proposition 5.8. The homomorphism u : A⊕ B −→ A⊗ B defined by u(a, b) = a⊗ b is the universal
example of a bilinear map out of A⊕ B. That is, if f : A⊕ B −→ C is also bilinear, then there is a unique
homomorphism f : A⊗ B −→ C making the diagram commute.

A⊕ B
f

//

u %%

C

A⊗ B
f

<<

Beware that u : A⊕ B −→ A⊗ B is not surjective in general. For instance Z2 ⊗Z3 ∼= Z6.
We can also make sense of tensor product of vector spaces V ⊗W in a similar way. This has a

similar universal property in terms of bilinear maps. One of the helpful things to know is that if
{v1, . . . , vk} is a basis for V and {w1, . . . , wn} is a basis for W, then the set {vi ⊗ wj} gives a basis
for V ⊗W. In particular,

dim(V ⊗W) = dim(V) · dim(W).

Another important property of the tensor product is its relation to Hom groups.

Fri, Oct. 11

Proposition 5.9. Given abelian groups A, B, and C, there is an isomorphism

Hom(A⊗ B, C) ∼= Hom(A, Hom(B, C))

that is natural in A, B, and C.

This is an example of an ‘adjunction’, and is completely analogous to the homeomorphism

Map(X×Y, Z) ∼= Map(X, Map(Y, Z))

in the world of topological spaces.
We can use Proposition 5.9 to obtain a distributive law for tensor products:

Proposition 5.10. Given abelian groups A1, A2, and B, there is a natural isomorphism

(A1 ⊕ A2)⊗ B ∼= (A1 ⊗ B)⊕ (A2 ⊗ B).
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Proof. For any abelian group C, we have

Hom
(
(A1 ⊕ A2)⊗ B, C

)
∼= Hom

(
A1 ⊕ A2, Hom(B, C)

)
∼= Hom

(
A1, Hom(B, C)

)
⊕Hom

(
A2, Hom(B, C)

)
∼= Hom(A1 ⊗ B, C)⊕Hom(A2 ⊗ B, C)

∼= Hom
(
(A1 ⊗ B)⊕ (A2 ⊗ B), C

)
.

So we have shown that, for the two groups G1 and G2 that we want to compare, the functors
Hom(G1,−) and Hom(G2,−) are naturally isomorphic. The proposition now follows from the
following lemma. �

Lemma 5.2. (Yoneda) Let A, B, and C be abelian groups. Suppose given an isomorphism

ηC : Hom(A, C) ∼= Hom(B, C)

that is natural in C. Then A ∼= B.

Proof. We define f : A −→ B by f = η−1
B (idB) and similarly g : B −→ A by g = ηA(idA). You can

use the naturality diagram to show f ◦ g = id and g ◦ f = id. �

Proposition 5.4 will follow from

Lemma 5.3. Tensoring with Q preserves (short) exact sequences. In other words, if

0 −→ A i−→ B −→ C
q−→ 0

is exact, then so is
0 −→ Q⊗ A −→ Q⊗ B −→ Q⊗ C −→ 0.

Abelian groups with this property are called flat.

Proof. You are asked to show on your homework that for any abelian D, the sequence

D⊗ A −→ D⊗ B −→ D⊗ C −→ 0

is always exact. So it suffices to show that Q⊗ A −→ Q⊗ B is injective. We will write ϕ for this
map of Q-vector spaces.

Let x = ∑i ri ⊗ ai ∈ Q⊗ A such that ϕ(x) = 0 in Q⊗ B. We can clear denominators of the
ri by multiplying by some sufficiently large integer n. Thus nx is in the image of A −→ Q⊗ A,
a 7→ 1⊗ a. So we can write nx = 1⊗ a for some a ∈ A. Now

1⊗ i(a) = ϕ(nx) = nϕ(x) = 0

in Q⊗ B, so i(a) must be a torsion class in B. Since i : A ↪→ B was injective, it follows that a was
torsion in A. But then nx = 1⊗ a = 0 in Q⊗ A. It follows that x = 1

n · nx = 0 as well. �

Mon, Oct. 14

Corollary 5.11. If
0 −→ A −→ B −→ C −→ 0

is short exact, then rank(B) = rank(A) + rank(C).

Proof. This follows from the lemma, given that rank(A) = dimQ(Q⊗ A). �
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Proof of Proposition 5.4. Let Zi := ker(∂i) ⊆ Ci be the subgroup of cycles and Bi = im(∂i+1) ⊆ Zi ⊆
Ci be the boundaries. The key is to note that we have short exact sequences

0 −→ Zi −→ Ci −→ Bi−1 −→ 0.

and
0 −→ Bi −→ Zi −→ Hi −→ 0.

By the corollary, these tell us that

rank(Ci) = rank(Zi) + rank(Bi−1)

and
rank(Zi) = rank(Bi) + rank(Hi).

So

∑
i
(−1)i rank(Ci) = ∑

i
(−1)i(rank(Bi) + rank(Hi) + rank(Bi−1)).

This is a telescoping sum, and we end up with χ(H∗). �

So this tells us that the Euler characteristic only depends on the homology of the space, not on
the particular simplicial model. This also allows us to define the Euler characteristic for any space
(with “finite” homology), not only for simplicial complexes.

Definition 5.12. Let X be a space such that H∗(X) is a finite chain complex. We then define

χ(X) := χ(H∗(X)).

By Proposition 5.4, this agrees with the previous notion for simplicial complexes.

Example 5.13.

(1) X = S2. We built the sphere as a ∆-complex by gluing to-
gether two 2-simplices. The leads to the Euler characteristic
computation

χ(S2) = 3− 3 + 2 = 2. x1

x2

x2

x3

y1 y3

y3

y2

y1

z1

z2

On the other hand, the computation via homology is

χ(S2) = χ(H∗(S2)) = 1− 0 + 1 = 2.

(2) X = T2. The torus was similarly built by gluing two 2-
simplices. We have, on the one hand

χ(T2) = 1− 3 + 2 = 0

and on the other

χ(H∗(T2)) = 1− 2 + 1 = 0.
x1

x1

x1

x1

y1 y1

y3

y2

y3

z1

z2

(3) X = RP2. The projective plane was built from two simplices
as in the picture to the right. So

χ(RP2) = 2− 3 + 2 = 1

and
χ(RP2) = rank(Z)− rank(Z/2Z) = 1

y2 y2

y3

y1

y3

z1

z2

x2

x1

x1

x2
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5.3. Degree. The next topic is yet another variant of homology, this one defined for CW com-
plexes. It will be convenient to first discuss the notion of “degree” of a map of spheres.

Definition 5.14. For n > 0, let f : Sn −→ Sn be any map. This induces a map

Z ∼= H̃n(Sn)
f∗−→ H̃n(Sn) ∼= Z

which is necessarily of the form i 7→ k · i for some k ∈ Z. This integer k is called the degree of the
map f .

Note that there are two possible choices of isomorphism H̃n(Sn) ∼= Z, corresponding to the two
generators for the infinite cyclic group. But as long as we use the same choice in both the domain
and codomain of f∗, this makes the notion of degree well-defined. Here are some properties of the
degree of a map of spheres.

Proposition 5.15. (1) deg( f ) only depends on the homotopy class of f
(2) The degree defines a homomorphism deg : πn(Sn) −→ H̃n(Sn) ∼= Z.
(3) deg(id) = 1.
(4) deg(g ◦ f ) = deg(g) · deg( f )

Proof. (1) This follows from homotopy-invariance of homology
(2) Recall that the sum f + g of two elements of the homotopy group is defined to be the

composite

Sn p−→ Sn ∨ Sn f∨g−−→ Sn,

where p is a pinch map. Applying homology gives

H̃n(Sn)
p∗−→ H̃n(Sn ∨ Sn) ∼= H̃n(Sn)⊕ H̃n(Sn)

f∗⊕g∗−−−→ H̃n(Sn).

The isomorphism H̃n(Sn ∨ Sn) ∼= H̃n(Sn) ⊕ H̃n(Sn) is induced by the two collapse maps
ci : Sn ∨ Sn −→ Sn. These compose with the pinch map p to give maps (based-)homotopic
to the identity, so that the above sequence is isomorphic to

H̃n(Sn)
∆−→ H̃n(Sn)⊕ H̃n(Sn)

f∗⊕g∗−−−→ H̃n(Sn),

which simplifies to the sum f∗ + g∗.
(3) Since H̃n is a functor, we know that H̃n(idSn) = idH̃n(Sn), so that the multiplier is just 1.

(4) This again comes from the fact that H̃n is a functor! We know that (g ◦ f )∗ = g∗ ◦ f∗, so that

deg(g ◦ f ) · 1 = (g ◦ f )∗(1) = g∗( f∗(1)) = g∗(deg( f ) · 1) = deg( f ) · g∗(1) = deg( f ) · deg(g) · 1.

�

Proposition 5.16. πn(Sn) ∼= Z⊕? for n ≥ 1.

Proof. We have a homomorphism deg : πn(Sn) −→ Z. There are two possibilities: either it is the
zero homomorphism, or it is surjective. Since deg(id) = 1, it must be surjective. But then we have
a splitting s : Z −→ πn(Sn) defined by s(n) = n · idSn . As we have discussed, the splitting induces
a direct sum decomposition. �

In fact, the ? is trivial, so that πn(Sn) ∼= Z for all n ≥ 1.

Wed, Oct. 16
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6. CELLULAR HOMOLOGY

We now introduce our third version of homology, this one defined for CW complexes. The idea
is to define the cellular chain complex by

Ccell
n (X) := Z{n-cells of X}.

For the differential ∂cell
n : Ccell

n (X) −→ Ccell
n−1(X), let en

α be an n-cell of X. Then en
α is determined by

its attaching map ϕα : Sn−1 −→ skn−1 X. The idea is that ∂cel
n (en

α) should capture how the attaching
map interacts with the various (n− 1)-cells. If we write

∂cell
n (en

α) = ∑
β

dαβ[β],

where β are the (n− 1)-cells of X, then we take dαβ to be the degree of the map

Sn−1 ϕα−→ skn−1 X −→ skn−1 X/ skn−2 X ∼=
∨
β

Sn−1 pβ−→ Sn−1.

It remains to show that ∂cell
n−1 ◦ ∂cell

n = 0 and to then define cellular homology as the homology
of this cellular chain complex. This can be done, but there is another, slick, approach, using the
machinery we have already built up.

Example 6.1. Before we give the precise definition, let’s turn to an example. For n ≥ 2, consider
the CW structure on Sn having a single 0-cell and single n-cell. Then the cellular chain complex
will be just Z in degrees 0 and n, with no possible differential. So we immediately read off the
homology groups.

For n = 1, there is a possible d1 : C1(S1) −→ C0(S1). But in fact the differential is zero.

We wanted to define
Ccell

n (X) := Z{n-cells of X}.
Now in a truly perverse act, we can rewrite this as

Z{n-cells of X} ∼= H̃n(
∨
β

Sn) ∼= H̃n(skn X/ skn−1 X) ∼= Hn(skn X, skn−1 X),

and we now instead choose to define

Ccell
n (X) := Hn(skn X, skn−1)X.

The differential is defined as the composite

Ccell
n (X) = Hn(skn X, skn−1 X)

δ−→ Hn−1(skn−1 X) −→ Hn−1(skn−1 X, skn−2 X) = Ccell
n−1(X).

But now with this definition, it is simple to check that ∂cell
n ◦ ∂cell

n+1 = 0: this composition is displayed
in the diagram

Ccell
n+1(X) Hn+1(skn+1 X, skn X)

δ // Hn(skn X)

**
Hn(skn X, skn−1 X)

δtt

Ccell
n (X).

Ccell
n−1(X) Hn−1(skn−1 X, skn−2 X)

δ // Hn−1(skn−1 X)

But the two arrows surrounding Ccell
n (X) are part of the long exact sequence in homology for the

pair (skn X, skn−1 X) and therefore compose to zero. It follows that we have a chain complex, so
that the following definition makes sense.
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Definition 6.2. Given a CW structure on a space X, we define

Hcell
n (X) := Hn(Ccell

∗ (X)).

We can also introduce coefficients or consider a reduced theory, just as in the other versions of
homology.

Theorem 6.3. For any CW complex X, we have

Hcell
n (X) ∼= Hn(X).

Before we prove the theorem, it will be convenient to establish the following.

Lemma 6.1. (1) For any k < n, the inclusion skn X ↪→ X induces an isomorphism Hk(skn X) ∼=
Hk(X).

(2) For any k > n, we have Hk(skn X) = 0.

Proof. We only prove (i) in the case that X is finite-dimensional. See p. 138 of Hatcher for the
general case. We have an exact sequence

Hk+1(skn X, skn−1 X)
δ−→ Hk(skn−1 X) −→ Hk(skn X) −→ Hk(skn X, skn−1 X).

These outer two groups are zero if k /∈ {n, n− 1}. So if k > n, we have Hk(skn X) ∼= Hk(skn−1 X) ∼=
. . . Hk(sk0 X) = 0. Similarly, if k < n, we conclude that Hk(skn X) ∼= Hk(skn+1 X) ∼= . . . Hk(X). �

Proof of Theorem 6.3. Consider the following diagram.

0

0 = Hn(skn−1 X)

))

Hn(skn+1 X) ∼= Hn(X)

44

Hn(skn X)

55

jn
))

Hn+1(skn+1 X, skn X)

δ
55

∂cell
n+1 // Hn(skn X, skn−1 X)

δ **

∂cell
n // Hn−1(skn−1 X, skn−2 X)

Hn−1(skn−1 X)
jn−1

44

0 = Hn−1(skn−2 X)

44

First, we have
Hn(X) ∼= Hn(skn X)/ im(δ).

Since jn is injective, the latter quotient is identified with im(jn)/ im(∂cell
n+1). But since the down-

right sequence is exact, we can replace this with ker(δ)/ im(∂cell
n+1). Finally, since jn−1 is injective,

the latter is the same as the quotient

ker(∂cell
n )/ im(∂cell

n+1) = Hcell
n (X).

�

Having established this theorem, we will now drop the decoration “cell” on cellular homology.

Fri, Oct. 18
We turn now to examples. In practice, many (connected) examples are given a CW structure

with a single 0-cell, so it is useful to have

Proposition 6.4. Suppose that X is a CW complex with a single 0-cell. Then the differential d1 is trivial.
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Proof. The differential is H1(sk1 X, ∗) ∂−→ H0(∗)
∼=−→ H0(∗, ∅). But that connecting homomorphism

∂ is trivial, since the next map in that long exact sequence is the isomorphism H0(∗)
∼=−→ H0(sk1 X).

�

Example 6.5.

(1) T2 has a CW structure with a single 0 cell, two 1-cells a and b, and a single 2-cell attached
by the map S1 −→ S1 ∨ S1 represented by aba−1b−1. It follows that the coefficients in the
differential ∂2 : C2 = Z{e} −→ C1 = Z{a, b} are both 1 + (−1) = 0. So the cellular chain
complex has no differentials!

(2) The Klein bottle K has a CW structure with a single 0 cell, two 1-cells a and b, and a sin-
gle 2-cell attached by the map S1 −→ S1 ∨ S1 represented by abab−1. It follows that the
differential ∂2 : C2 = Z{e} −→ C1 = Z{a, b} is ∂2(e) = (2a, 0).

(3) RPn has a CW structure with a single cell in each dimension. The k-skeleton is RPk, and
the attaching map q : Sk −→ RPk for the (k + 1)-cell is the defining double cover of RPk.
To determine the degree of the composition

Sk q−→ RPk −→ RPk/RPk−1 ∼= Sk,

note that the cover q sends the equator Sk−1 to RPk−1 and therefore gets collapsed in the
next map. It follows that our map factors as

Sk −→ Sk/(Sk−1) ∼= Sk ∨ Sk −→ Sk.

Thinking now of RPk as the quotient of the northern hemisphere of Sk, modulo a relation
on the equator, we see that the degree of our map on the northern Sk is 1, whereas the
degree on the southern Sk is the degree of the antipodal map.

Lemma 6.2. Let a : Sk −→ Sk be the antipodal map. Then deg(a) = (−1)k+1.

Proof. The sphere Sk has a standard embedding inside Rk+1. The antipodal map is

(x1, . . . , xk+1) 7→ (−x1, . . . ,−xk+1)

and can therefore be described as the composition of k + 1 reflections (one in each coordi-
nate). It suffices to show that any reflection has degree −1.

If r is a reflection in a hyperplane H, then we can think of H ∩ Sk as an equator and
describe Sk as a CW-complex obtained by attaching two k-cells ek

1 and ek
2 along this equator.

The difference of the chains ek
1 − ek

2 is a cycle that represents the generator of H̃k(Sk). But
r∗(ek

1 − ek
2) = ek

2 − ek
1 = −(ek

1 − ek
2), so deg(r) = −1.

�

If follows that the differential

∂k+1 : Ck+1(RPn) ∼= Z −→ Ck(RPn) ∼= Z

is

∂k+1(ek+1) = (1 + (−1)k+1)ek =

{
0 k even
2 k odd.

So our cellular chain complex is

. . . Z
2−→ Z

0−→ Z
2−→ Z

0−→ Z.
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If n is even, then the first differential is Z
2−→ Z, whereas if n is odd, then the first differential

is Z
0−→ Z. We read off

Hk(RPn) ∼=


Z k = 0
Z/2Z k odd, k < n
0 k even, k ≤ n
Z k = n odd
0 k > n.

If we want to calculate H∗(RPn; F2), we first tensor the cellular chain complex with F2.
But then all differentials become zero, and we see that Hi(RPn; F2) ∼= F2 for 0 ≤ i ≤ n.

(4) We can build an infinite-dimensional CW complex RP∞ as the union of the RPn’s. The
homology of this space is then

Hk(RP∞) ∼=

 Z k = 0
Z/2Z k odd
0 else.

(5) CPn has a CW structure with a single cell in every even dimension. There is no room for
differentials, so we conclude that

Hk(CPn) ∼=
{

Z k even, k ≤ 2n
0 else.

(6) We can build an infinite-dimensional CW complex CP∞ as the union of the CPn’s. The
homology of this space is then

Hk(CPn) ∼=
{

Z k even
0 else.

Wed, Oct. 23

7. FURTHER RESULTS

7.1. The Hurewicz Theorem. We long ago gave a description of H0(X), but we have put off
describing H1(X). We do this now.

Theorem 7.1 (Hurewicz). Assume that X is a connected CW complex. Then

H1(X) ∼= π1(X)ab.

Proof. First, note that cells in dimensions 3 or higher affect neither π1 nor H1. In other words, if
sk2 X is the 2-skeleton, then π1(sk2 X) ∼= π1(X) and H1(sk2 X) ∼= H1(X).

By the van Kampen theorem, we know that π1(sk1 X) � π1(sk2 X) is surjective. Moreover, if
we denote by β1, . . . , βk the 2-cells of X (or really, their attaching maps, thought of as elements of
π1(sk1 X)), then the van Kampen theorem tells us that

π1(sk2 X) ∼= π1(sk1 X)/〈β1, . . . , βk〉.

Denote by s̃k1 X the result of collapsing out a maximal tree in the graph sk1 X, and recall that the
natural map sk1 X −→ s̃k1 X is a homotopy equivalence. The space s̃k1 X is a wedge of circles
s̃k1 X ∼=

∨
S1, each circle corresponding to a generator of π1(sk1 X). We now have

π1(X2) ∼= π1(s̃k1 X)/〈β1, . . . , βk〉 ∼= F(α1, . . . , αn)/〈β1, . . . , βk〉.
43



Let’s now turn to homology. We know that H1(X) is computed as a quotient

C2(X) −→ Z1(X).

Lemma 7.1. We have Z1(X) = Z1(sk1 X) = H1(sk1 X) ∼= H1(s̃k1 X) = Z1(s̃k1 X) = C1(s̃k1 X).

The homology isomorphism follows from the fact that sk1 X −→ s̃k1 X is a homotopy equiva-
lence.

The lemma implies that H1(X) is the quotient

H1(X) ∼= Z(α1, . . . , αn)/〈β1, . . . , βk〉.
There is now an obvious surjection

π1(X) −→ H1(X)

induced by the abelianization map F(α1, . . . , αn) � Z[α1, . . . , αn]. The following lemma implies
that the map π1(X) −→ H1(X) is also abelianization. �

Lemma 7.2. Let ϕ : F −→ G be a surjection of groups with kernel N. Then the map G = F/N λ−→
Fab/Nab induces an isomorphism Gab

∼= Fab/Nab.

Proof. This is on HW8. �

There is also a statement in higher dimensions, assuming that all lower homotopy groups van-
ish. We state it without proof.

Theorem 7.2 (Hurewicz). Assume that X is a CW complex satisfying πk(X) = 0 for k < n (we say that
X is (n− 1)-connected), where n ≥ 2. Define

hn : πn(X) −→ Hn(X)

by
hn(α) = α∗(xn),

where xn ∈ Hn(Sn) is the class of the unique n-cell (in the minimal CW structure on Sn). Then hn is an
isomorphism of groups, known as the Hurewicz map.

Using induction and the fundamental group Hurewicz theorem, this implies the following re-
sult.

Corollary 7.3. Suppose that X is a CW complex that is (n− 1)-connected. Then H̃k(X) = 0 for k < n as
well.

Note that the torus T2 shows that Theorem 7.2 fails if we drop the connectivity hypothesis.

7.2. Lefschetz Fixed Point Theorem. We can also use homology to detect whether a map (up to
homotopy) has fixed points. Recall if we represent a linear map ϕ : Zn −→ Zn by an n× n-matrix,
then the trace of ϕ is tr(ϕ) = ∑i aii. More generally, if A is a finitely generated abelian group, we
define the trace of an endomorphism ϕ to be the trace of the induced map

ϕ : A/torsion −→ A/torsion.

This is well-defined because the trace of an endomorphism of Zn does not depend on the choice
of basis.

Definition 7.4. Let X be a space with “finite” homology, as in Definition 5.3. We then define the
Lefschetz number of f to be

λ( f ) = ∑
n
(−1)ntr( f∗ : Hn(X) −→ Hn(X))
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Theorem 7.5. Let X be a finite simplicial complex equipped with a map f : X −→ X. If the Lefschetz
number λ( f ) is nonzero, then f has a fixed point, i.e. a point x ∈ X such that f (x) = x.

Example 7.6. Let X be a finite complex that is contractible. Then H∗(X) ∼= H∗(pt), and it follows
that the Lefschetz number of any endomorphism of X must be 1. By Theorem 7.5, this endomor-
phism must have a fixed point. For example, in the case X = D2, this is the Brouwer Fixed Point
Theorem.

Note that the finiteness assumption is important here. The infinite sphere S∞ is contractible and
has a free (antipodal) action by C2. In other words, the antipodal map on S∞ has no fixed points.

Example 7.7. Let X = RP2. If we mod out by torsion, then the homology of RP2 looks like the
homology of a point. So Theorem 7.5 also applies to show that any endomorphism of RP2 must
have a fixed point. The same applies to any even-dimensional real projective space.

Sketch of Theorem 7.5. As usual, we point to Hatcher (Theorem 2C.3) for a complete proof, and only
give the idea here. Suppose that f : X −→ X is fixed point free. We wish to show that λ( f ) = 0.
After subdividing our simplicial structure appropriately, we can approximate f up to homotopy
by a simplicial map g, such that g maps each simplex of X to a disjoint simplex. Since f and g are
homotopic, they have the same Lefschetz number, and it suffices to show that λ(g) = 0. Since
g(σ) ∩ σ = ∅ for each simplex σ, it follows that the trace of g∗ : C∆

n (X) −→ C∆
n (X) is zero for each

n. Then a generalization of Proposition 5.4 shows that the trace computed at the chain complex
level agrees with the trace computed at the homology level. �

8. HOMOLOGY OF PRODUCTS

Our next goal will be to describe H∗(X × Y) in terms of H∗(X) and H∗(Y). We will work with
cellular homology and will therefore assume that X and Y are CW complexes.

Proposition 8.1. Let X and Y be CW complexes. Then there is a CW structure on X×Y, such that

skn(X×Y) =
⋃

j+k=n

skj(X)× skk(Y).

The main point is the description of the attaching maps. Suppose that ej
α is a j-cell in X with

attaching map ϕα and ek
β is a k-cell in Y with attaching map ϕβ. These give characteristic maps

Φα : Dj −→ skj(X) and Φβ : Dk −→ skk(Y). Then we want to describe an attaching map for an
n-cell en

αβ. The key is that we have

Sn−1 ∼= (Sj−1 × Dk) ∪Sj−1×Sk−1 (Dj × Sk−1).

Then the attaching map for the n-cell is

(Sj−1 × Dk) ∪Sj−1×Sk−1 (Dj × Sk−1)
(ϕα×Φβ)∪(Φα×ϕβ)−−−−−−−−−−→

(
skj−1(X)× skk(Y)

)
∪
(

skj(X)× skk−1(Y)
)

Mon, Oct. 28

In other words, we have a bijection

{n-cells in X×Y} ∼= ä
k+j=n

{k-cells in X} × {j-cells in Y}

Applying the free abelian group functor, we get that

Cn(X×Y) ∼=
⊕

k+j=n

Ck(X)⊗ Cj(Y).

45



We would like to say that we have an isomorphism of chain complexes, but we first need to
discuss how to make the right side into a chain complex.

Definition 8.2. If C∗ and D∗ are chain complexes, define a chain complex C∗ ⊗ D∗ by

(C∗ ⊗ D∗)n :=
⊕

k+j=n

Ck ⊗ Dj

and where the differential ∂C∗⊗D∗
n is defined by

∂n(x⊗ y) = ∂(x)⊗ y + (−1)deg(x)x⊗ ∂(y).

We need to check that this is in fact a complex, in the sense that ∂n−1 ◦ ∂n = 0. We have

∂n−1(∂n(x⊗ y)) = ∂n−1

(
∂(x)⊗ y + (−1)deg(x)x⊗ ∂(y)

)
= ∂(∂(x))⊗ y + (−1)deg(∂(x))∂(x)⊗ ∂(y)

+ (−1)deg(x)∂(x)⊗ ∂(y) + (−1)2 deg(x)x⊗ ∂(∂(y))

= 0 + (−1)deg(x)−1∂(x)⊗ ∂(y) + (−1)deg(x)∂(x)⊗ ∂(y) + 0 = 0.

So C∗ ⊗ D∗ is in fact a chain complex.

Proposition 8.3. The above isomorphism extends to an isomorphism of chain complexes C∗(X ⊗ Y) '
C∗(X)⊗ C∗(Y).

Proof. We know that en
α,β ∈ Cn(X × Y) maps to ek

α ⊗ ej
β ∈ Ck(X)⊗ Cj(Y), and that the differential

on the latter is
∂(ek

α ⊗ ej
β) = ∂(ek

α)⊗ ej
β + (−1)kek

α ⊗ ∂(eβ)
j.

So it remains to describe the differential ∂(en
α,β).

By naturality, it suffices to consider the universal case, in which X = Ik, Y = I j, and X × Y =
Ik × I j ∼= In. We give the argument for k = j = 1 and k = 1, j = 2. For the general case, see
Hatcher, section 3.B.

For k = j = 1, we want to compute ∂(e2) in C∗(I2). If we consider this 2-cell as being oriented
counterclockwise, then the formula for ∂(e2) is

∂(e2) = −e1
0×e1

+ e1
1×e1 + e1

e1×0 − e1
e1×1.

And this exactly maps over to ∂(e1)⊗ e1 − e1 ⊗ ∂(e1) ∈ C∗(I1)⊗ C∗(I1).

Wed, Oct. 30

For k = 1 and j = 2, we want to compute ∂(e3) in C∗(I3), where we are thinking of I3 as I1× I2.
Again, we orient each face of ∂(I3) with a counterclockwise orientation, looking from the outside
of the cube. Then the formula for ∂(e3) is

∂(e3) = −e2
0×e2 + e2

1×e2 + e2
e1×0×e1 − e2

e1×1×e1 − e2
e1×e1×0 + e2

e1×e1×1.

Again, this maps over exactly to ∂(e1)⊗ e2 − e1 ⊗ ∂(e2) ∈ C∗(I1)⊗ C∗(I2). �

It follows that the homology of X × Y is the homology of the complex C∗(X)⊗ C∗(Y), and it
remains to compute this latter homology. The answer is much simpler if we use field coefficients.

Proposition 8.4. Let k be a field, and let C∗ and D∗ be chain complexes of k-vector spaces. Then

Hn(C∗ ⊗k D∗) ∼=
⊕

k+j=n

Hk(C∗)⊗k Hj(D∗).
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Before turning to the proof, we consider an example.

Example 8.5. Consider X = Y = RP2. We know that Hk(RP2; F2) is F2 when k = 0, 1, 2 and is
zero in other degrees. The corollary gives us that

dimF2 Hk(RP2 ×RP2; F2) ∼=


1 k = 0, 4
2 k = 1, 3
3 k = 2
0 else

.

If we try to compute this directly, we use the cellular chain complex for RP2 ×RP2, which takes
the form

C4(RP2 ×RP2)
∂4 // C3(RP2 ×RP2)

∂3 // C2(RP2 ×RP2)
∂2 // C1(RP2 ×RP2)

∂1 // C0(RP2 ×RP2)

Z{e4
2,2} (

2
2

) // Z{e3
1,2, e3

2,1} 0 0
2 −2
0 0


// Z{e2

0,2, e2
1,1, e2

2,0}(2 0 0
0 0 2

) // Z{e1
0,1, e1

1,0} 0
// Z{e0

0,0}

If we tensor with F2, then all differentials become zero, and the homology is as given above.

On the other hand, the above example shows that Proposition 8.4 does not hold with Z-
coefficients. Recall that the integral homology of RP2 is Z in degree zero and Z/2Z in degree
1. So if we just take tensor product of the homology, we don’t get anything above degree two. But
the above complex has a Z/2Z in the homology in degree 3.

Corollary 8.6. [Künneth Theorem] Let k be a field and X and Y CW complexes. Then

Hn(X×Y; k) ∼=
⊕

k+j=n

Hk(X; k)⊗k Hj(Y; k).

Proof. This will follow from Proposition 8.4. We have

C∗(X)⊗Z C∗(Y)⊗Z k ∼= C∗(X)⊗Z C∗(Y)⊗Z k⊗k k ∼= (C∗(X)⊗Z k)⊗k (C∗(Y)⊗Z k).

Now just apply Proposition 8.4. �

Fri, Nov. 1

Proof. There are several advantages to working with vector spaces. For one, every short exact
sequence always splits (since every vector space is a free module). This implies that tensoring
with a vector space will always preserve short exact sequences as well.

More generally, if C is a vector space and D∗ is a chain complex of vector spaces, we will have
Hn(C ⊗ D∗) ∼= C ⊗Hn(D∗) (on Homework 9, you are asked to show this in the context of free
abelian groups). In particular, we can take C to be any of the Ci. Now if C∗ is a chain complex in
which all differentials are zero, we are done.

Now consider a general complex C∗, and let B∗ ⊆ Z∗ ⊆ C∗ be the subcomplexes of boundaries
and cycles, respectively. Then the complexes B∗ and Z∗ have no differentials, and moreover we
have a short exact sequence of complexes

0 −→ Z∗ −→ C∗
∂−→ B∗ −→ 0.

Again, this will still be exact after tensoring with a complex D∗, so that we have

0 −→ Z∗ ⊗ D∗ −→ C∗ ⊗ D∗
∂⊗id−−→ B∗ ⊗ D∗ −→ 0.
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This short exact sequence gives rise to a long exact sequence in homology

−→ Hn(Z∗ ⊗ D∗) −→ Hn(C∗ ⊗ D∗) −→ Hn(B∗ ⊗ D∗) −→ Hn−1(Z∗ ⊗ D∗) −→ . . .

Tracing through, you can show that the connecting homomorphism Hn(B∗ ⊗ D∗) −→ Hn−1(Z∗ ⊗
D∗) is simply induced by the inclusing of subcomplexes B∗ ↪→ Z∗.

Since B∗ and Z∗ are both complexes with trivial differentials, we can rewrite the sequence as

−→ (Z∗ ⊗H∗(D∗))n −→ Hn(C∗ ⊗ D∗) −→ (B∗ ⊗H∗(D∗))n −→ (Z∗ ⊗H∗(D∗))n−1 −→ . . .

This now splits as a bunch of short exact sequences

0 −→ B∗ ⊗H∗(D∗) −→ Z∗ ⊗H∗(D∗) −→ H∗(C∗ ⊗ D∗) −→ 0.

Again, since tensoring with H∗(D∗) preserves exact sequences, we conclude that H∗(C∗ ⊗ D∗) ∼=
H∗(C∗)⊗H∗(D∗). �

We have proved the Kunneth theorem for field coefficients. The example of RP2 ×RP2 shows
that the result does not always hold with integer coefficients. As we will see, it holds if the homol-
ogy groups of X and Y are torsion-free, as in the case of the torus.

Example 8.7. X = T2 = S1 × S1. Here we do have an isomorphism

H∗(T2; Z) ∼= H∗(S1; Z)⊗H∗(S1; Z).

Looking back to the proof of Proposition 8.4, we can try to give the argument with integral
chains and see where it breaks down. Since each cellular chain groups Cn(X) is free abelian, and
since Bn ⊆ Cn(X) is a subgroup, it follows that Bn is also free abelian. This implies that every
short exact sequence

0 −→ Zn ↪→ Cn(X) −→ Bn−1 −→ 0
splits, so that tensoring with any group will again produce a short exact sequence. Free abelian
groups are flat (i.e., tensoring with them preserves exact sequences) and the complexes Z∗ and B∗
have zero differentials, so it follows that

Hn(Z∗ ⊗ D∗) ∼= Z∗ ⊗Hn(D∗) and Hn(B∗ ⊗ D∗) ∼= B∗ ⊗Hn(D∗).

The spot where the argument breaks down is that although the connecting homomorphisms in
the long exact sequence

λ⊗id−−→ (Z∗ ⊗H∗(D∗))n −→ Hn(C∗ ⊗ D∗) −→ (B∗ ⊗H∗(D∗))n
λ⊗id−−→ (Z∗ ⊗H∗(D∗))n−1 −→ . . .

are induced by the inclusion λn−1 : Bn−1 ↪→ Zn−1, we do not know that these are injective after
tensoring with the groups Hn(D). The best we can say is that we have short exact sequences

0 −→ coker(λn ⊗ id) −→ Hn(C∗ ⊗ D∗) −→ ker(λn−1 ⊗ id) −→ 0.

But tensoring with any abelian group is right-exact, meaning that it preserves quotients. So
coker(λn ⊗ id) ∼= coker(λn)⊗H∗(D) ∼= H∗(C)⊗H∗(D). So we have a short exact sequence

0 −→ (H∗(C)⊗H∗(D))n −→ Hn(C∗ ⊗ D∗) −→ ker(λn−1 ⊗ id) −→ 0.

It remains to identify the kernel of λn−1 ⊗ id.

Definition 8.8. Let A be an abelian group. Then a free resolution of A is a exact sequence

. . . −→ F2 −→ F1 −→ F0 −→ A −→ 0

in which each group Fn is free abelian.

Proposition 8.9. Any abelian group has a free resolution of length 1, meaning that Fn = 0 for n > 1.
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Proof. First pick any surjection F0
ε−→ A, where F0 is free abelian. This amounts to choosing a set of

generators for A. Define F1 = ker(ε). Then F1 is a subgroup of a free abelian group and is therefore
free abelian. �

Definition 8.10. Let F1
ϕ−→ F0

ε−→ A be a free resolution, and let B be an abelian group. Define

Tor(A, B) := ker(ϕ⊗ idB : F1 ⊗ B −→ F0 ⊗ B).

Mon, Nov. 4

Example 8.11. If F is free abelian, we can think of it as a length zero resolution of itself. It follows
that

Tor(F, A) = 0
for any abelian group A.

Example 8.12. The group Z/n has length 1 resolution Z n−→ Z −→ Z/n. It follows that
Tor(Z/n, A) is the kernel of the multiplication by n map on A. In other words,

Tor(Z/n, A) = the n-torsion subgroup of A

We need to show that this does not depend on the choice of resolution.

Lemma 8.1. Any two free resolutions of A are chain-homotopy equivalent.

Proof. Let

F1
ϕ
//

f1
��

F0 ε
''

f0
��

A

G1 ψ
//

g1

OO

G0
δ

77g0

OO

be free resolutions. Since F0 and G0 are free, we can find maps f0 and g0 as in the diagram,
and this induces factorizations f1 and g1. To see, for example, that
g∗ f∗ : F∗ −→ F∗ is chain-homotopic to the identity, we need a chain
homotopy h0 : F0 −→ F1 with

g0 f0(x)− x = ϕh0(x) and g1 f1(x)− x = h0ϕ(x).

But

ε
(

g0 f0(x)− x
)
= εg0 f0(x)− ε(x) = ε f0(x)− ε(x) = 0,

so g0 f0 − id lands in the kernel of ε, which is F1. That is, we have a

factorization F0
h0−→ F1

ϕ−→ F0 of g0 f0 − id. For the second equation,
since ϕ is injective, it suffices to check it after applying ϕ. But

ϕ
(

g1 f1(x)− x
)
= ϕg1 f1(x)− ϕ(x) = g0ψ f1(x)− ϕ(x) = g0 f0ϕ(x)− ϕ(x) = ϕh0ϕ(x),

so we are done.

F1

ϕ

��

f1 // G1

ψ
��

g1 // F1

ϕ

��
F0 f0

//

ε   

h0

77

G0 g0
//

δ
��

F0

ε~~
A

�

The ideas in Lemma 8.1 can be used to more generally prove

Proposition 8.13. Suppose that f∗ : C∗ −→ D∗ is a quasi-isomorphism between chain complexes of free
abelian groups. Then f∗ is a chain homotopy-equivalence.

We are now ready to prove
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Proposition 8.14. The group Tor(A, B) does not depend on the choice of free resolution of A. Moreover,
this group can also be computed by choosing instead a free resolution for B rather than A.

Proof. By Lemma 8.1, any two resolutions are chain homotopy-equivalent. But chain homotopy-
equivalences are preserved by tensoring with B, so it follows that Tor(A, B) is independent of the
choice of resolution.

Now let F∗
ε−→ A and G∗

δ−→ B be free resolutions. Note that we can think of ε and δ as quasi-
isomorphisms of chain complexes. Then we have a zig-zag of chain maps

F∗ ⊗ B id⊗δ←−− F∗ ⊗ G∗
ε⊗id−−→ A⊗ G∗.

By a problem on your homework, these are both quasi-isomoprhisms (since F∗ and G∗ are com-
plexes of free abelian groups). By Proposition 8.13, these are both chain homotopy equivalences,
so that composing ε⊗ id with a homotopy inverse for id⊗ δ gives the desired result. �

Going back to the reason we introduced Tor, recall that we saw the group

ker
(

Bn−1 ⊗Hj(D)
λn−1⊗id−−−−→ Zn−1 ⊗Hj(D)

)
showing up in an exact sequence. Since coker(λn−1) ∼= Hi(C), it follows that the kernel in question
is precisely Tor(Hn−1(C), Hj(D)). We have now proved

Theorem 8.15. Let C∗ and D∗ be chain complexes of free abelian groups. Then there is an exact sequence

0 −→ H∗(C∗)⊗H∗(C∗) −→ H∗(C∗ ⊗ D∗) −→ Tor(H∗−1(C∗), H∗(D∗)) −→ 0.

Applying this in the case C∗ = Ccell
∗ (X) and D∗ = Ccell

∗ (Y) gives

Theorem 8.16. [Künneth] For CW complexes X and Y, there is an exact sequence

0 −→ H∗(X; Z)⊗H∗(Y; Z) −→ H∗(X×Y; Z) −→ Tor(H∗−1(X), H∗(Y)) −→ 0.

In fact this sequence is always split, so that there is an isomorphism

Hn(X×Y; Z) ∼=

 ⊕
i+j=n

Hi(X; Z)⊗Hj(Y; Z)

⊕
 ⊕

i+j=n

Tor
(

Hi−1(X; Z), Hj(Y; Z)
) .

Wed, Nov. 6

Example 8.17. We turn back to X = RP2 ×RP2. Using the Künneth theorem and remembering
that RP2 only has nontrivial homology in degree 0 and 1, we get

H0(RP2 ×RP2; Z) ∼= H0(RP2; Z)⊗Z H0(RP2; Z) ∼= Z⊗Z Z ∼= Z

H1(RP2 ×RP2; Z) ∼= H1(RP2; Z)⊗Z H0(RP2; Z)⊕H0(RP2; Z)⊗Z H1(RP2; Z)

⊕ Tor(H0(RP2; Z), H0(RP2; Z))
∼= Z/2Z⊕Z/2Z⊕ Tor(Z, Z)

H2(RP2 ×RP2; Z) ∼= H1(RP2; Z)⊗Z H1(RP2; Z)⊕ Tor(H0(RP2; Z), H1(RP2; Z))

⊕ Tor(H1(RP2; Z), H0(RP2; Z))
∼= Z/2Z⊕ Tor(Z, Z/2Z)⊕ Tor(Z/2Z, Z)

H3(RP2 ×RP2; Z) ∼= Tor(H1(RP2; Z), H1(RP2; Z))
∼= Tor(Z/2Z, Z/2Z)
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There are three Tor groups to compute. Using the free resolutions 0 −→ Z −→ Z and Z
2−→ Z −→

Z/2Z, we see that these groups are

Tor(Z, Z) = 0 Tor(Z, Z/2Z) = 0, Tor(Z/2Z, Z) = 0, Tor(Z/2Z, Z/2Z) ∼= Z/2Z.

It follows that

H0(RP2 ×RP2; Z) ∼= Z, H1(RP2 ×RP2; Z) ∼= Z/2Z⊕Z/2Z,

H2(RP2 ×RP2; Z) ∼= Z/2Z, H3(RP2 ×RP2; Z) ∼= Z/2Z.
This is the same answer that comes from the chain complex we wrote down in Example 8.5.

9. COHOMOLOGY

We have now developed quite a bit of machinery, so let’s try to answer the following question:
Problem: Show that CP2 is not homotopy equivalent to S2 ∨ S4.
The first tool we learned about for distinguishing homotopy types is the fundamental group,

but both of these spaces are simply-connected (the 2-skeleton of both spaces is S2). The next tool
we learned about was homology, but the homology of both of these spaces is Z in dimensions
0, 2, 4 and trivial in other dimensions. So we need something else! Cohomology will allow us to
distinguish these spaces.

In defining homology, we always worked with chain complexes. Cohomology starts with
cochain complexes.

Definition 9.1. A cochain complex C∗ is a sequence Cn of abelian groups, together with differ-
entials ∂n : Cn −→ Cn+1, such that ∂n+1 ◦ ∂n = 0. Given a cochain complex C∗, we define its
cohomology groups to be

Hn(C∗) := ker(∂n)/ im(∂n−1).

There is a canonical way to obtain a cochain complex from a chain complex, simply by dualiz-
ing. Namely, if C∗ is a chain complex, we define the dual cochain complex by

Cn := Hom(Cn, Z),

with differential given by ∂n = Hom(∂n+1, Z). More precisely, if f ∈ Hom(Cn, Z), then ∂n( f ) ∈
Hom(Cn+1, Z) is defined by

(9.1) ∂n( f )(x) = −(−1)n f (∂n+1(x)),

where the sign arises from the Koszul sign rule. The “extra” negative sign out front appears from
the general formula ∂( f ) = ∂ ◦ f − (−1)deg( f ) f ◦ ∂.

Since Hom(−, Z) is only left-exact, the cohomology groups are not simply the duals of the
homology groups, as we will see in examples below.

Definition 9.2. We define the cohomology of a space X by

Hn(X; Z) := Hn(Hom(C∗(X), Z)).

More generally, for any coefficient group M, we define

Hn(X; M) := Hn(Hom(C∗(X), M)).

We can define this in any setting in which we defined homology before.

Example 9.3.

(1) X = S1. If we dualize the cellular chain complex, Z
0−→ Z, we get the cochain complex

Z
0←− Z, so that the cohomology groups agree with the homology groups in this case.
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(2) X = T2. If we dualize the cellular chian complex Z
0−→ Z2 0−→ Z, we get the cochain

complex

Z
0←− Z2 0←− Z,

so that again the cohomology groups are the same as the homology groups.

(3) X = RP2. If we dualize the cellular chian complex Z
2−→ Z

0−→ Z, we get the cochain
complex

Z
2←− Z

0←− Z,
so that we have

Hn(RP2; Z) ∼=

 Z n = 0
Z/2Z n = 2
0 else.

This finally gives us an answer which differs from homology.
We can also compute the cohomology using coefficients in F2. If we map the (integral)

cellular chain complex into F2, we get the cochain complex of F2-vector spaces

F2
0←− F2

0←− F2.

The cohomology groups are

Hn(RP2; F2) ∼=
{

F2 n = 0
0 else.

These agree with the mod 2 homology groups Hn(RP2; F2).

So we see that, sometimes the cohomology groups of a space agree with the homology groups,
but not always. Let’s now determine the precise relationship.

We will again work in the general context of a chain complex C∗ of free abelian groups, and we
will let M be an arbitrary abelian group of coefficients. Like in the proof of the Künneth theorem,
we have the short exact sequence of chain complexes

0 −→ Z∗ −→ C∗ −→ B∗−1 −→ 0.

Here B∗−1 is the chain complex with (B∗−1)n = Bn−1. Since B∗−1 is a complex of free abelian
groups, this sequence splits. This means that applying Hom(−, M) will produce a (split) short
exact sequence of cochain complexes. Taking cohomology then gives a long exact sequence in
cohomology

Hn(Hom(B∗−1, M)) −→ Hn(Hom(C∗, M)) −→ Hn(Hom(Z∗, M))
δ−→ Hn+1(Hom(B∗−1, M)) −→ . . .

Now the complexes B∗ and Z∗ have trivial differentials, so this remains true after applying
Hom(−M). The above long exact sequence then becomes

Homn(B∗−1, M) −→ Hn(Hom(C∗, M)) −→ Homn(Z∗, M))
δ−→ Homn+1(B∗−1, M) −→ . . .

Note that (B∗−1)n+1 = B(n+1)−1 = Bn, so that Homn+1(B∗−1, M) = Homn(B∗, M). The connecting
homomorphism

Homn(Z∗, M) −→ Homn(B∗, M)

is Hom(ι, M), where ι : B∗ ↪→ Z∗ is the inclusion. It follows that our long exact sequence splits
into a bunch of short exact sequences

0 −→ coker(Hom(ι, M))n−1 −→ Hn(Hom(C∗, M)) −→ ker(Hom(ι, M))n −→ 0.

We have a short exact sequence

0 −→ B∗ −→ Z∗ −→ H∗(C∗) −→ 0.
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By HW 7, Hom(−, M) is left exact, so that ker(Hom(ι, M))n = Hom(Hn(C∗), M). We have a short
exact sequence

0 −→ coker(Hom(ι, M))n−1 −→ Hn(Hom(C∗, M)) −→ Hom(Hn(C∗), M) −→ 0.

Like in the proof of the Künneth theorem, this sequence splits, and we are left with an “error”
term to understand.

Definition 9.4. Let F1 −→ F0 −→ A be a free resolution and let M be an abelian group. We define

Ext(A, M) := coker
(

Hom(F0, M) −→ Hom(F1, M)
)
.

Fri, Nov. 8

Proposition 9.5. The group Ext(A, M) does not depend on the choice of resolution of A.

This follows from Lemma 8.1.

To summarize, we have

Theorem 9.6 (Universal Coefficients). For any chain complex C∗ of free abelian groups and any abelian
group M, we have isomorphisms

Hn(Hom(C∗, M)) ∼= Hom(Hn(C∗), M)⊕ Ext(Hn−1(C∗), M).

When applied to the cohomology of a space, this theorem reads as

Theorem 9.7 (Universal Coefficients). For any space X and any abelian group M, we have isomorphisms

Hn(X; M) ∼= Hom(Hn(X; Z), M)⊕ Ext(Hn−1(X; Z), M).

Proposition 9.8. Ext(Z, A) = 0 and Ext(Z/nZ, A) ∼= A/nA.

Proof. The first statement is immediate since Z has a free resolution of length 0. The second follows
immediately from the free resolution Z

n−→ Z −→ Z/nZ. �

Note that it follows that, unlike Tor, the groups Ext(A, M) are not symmetric in A and M.

Example 9.9. Starting from the integral homology of RP2, which is H0 ∼= Z and H1
∼= Z/2Z, we

can deduce the integral cohomology, as well as the mod 2 cohomology. The integral cohomology
is as found in Example 9.3 because Hom(Z/2Z, Z) = 0 and Ext(Z/2Z, Z) ∼= Z/2Z. The mod 2
cohomology is found similarly.

There is also a Universal Coefficients Theorem for homology. It reads

Theorem 9.10 (Universal Coefficients, Homology). For any space X and abelian group M, there are
isomorphisms

Hn(X; M) ∼=
(
Hn(X; Z)⊗Z M

)
⊕ Tor(Hn−1(X; Z), M).

Example 9.11. This gives, for example, the mod 2 homology of RPn from the integral homology.
On the other hand, the mod 2 homology is easier, and it is often possible to deduce the integral
homology from the mod p homology.

For instance, the Kunneth theorem easily gives us that

dim Hn(RP2 ×RP2; F2) =

 1 n = 0, 4
2 n = 1, 3
3 n = 2

while

dim Hn(RP2 ×RP2; Fp) =

{
1 n = 0
0 n > 0
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for p odd. By the Universal Coefficient theorem, the homology of RP2 × RP2 must all be 2-
torsion in positive degrees, since any other summands would be detected in homology with mod
p coefficients for some p. (The free summands would be detected at every odd prime.)

We already know H0(RP2 ×RP2; Z) ∼= Z. Now

F2 ⊕F2 ∼= H1(RP2 ×RP2; F2) ∼= H1(RP2 ×RP2; Z)⊗F2 ⊕ Tor(H0(RP2 ×RP2; Z), F2)

= H1(RP2 ×RP2; Z)⊗F2.

This implies that H1(RP2×RP2; Z) ∼= Z/2i⊕Z/2j for some natural numbers i and j. Continuing
in this way, we find that H2(RP2 ×RP2; Z) ∼= Z/2` and H3(RP2 ×RP2; Z) ∼= Z/2k. If we had
the homology with coefficients in Z/4 as input rather than just with Z/2, we would see that the
integers i, j, k, and ` are all equal to 1.

9.1. Cohomology as a functor. We defined the cohomology of a space by dualizing a chain com-
plex C∗(X) and then passing to cohomology of the cochain complex. If we start with a chain
functor C∗(−) : Top −→ Ch≥0(Z), like singular chains, then it follows that the resulting co-
homology theory is also a functor on spaces. However, in the process of dualizing, we turn a
covariant functor into a contravariant functor, so that we have

Proposition 9.12. Singular cohomology defines a contravariant functor

H∗(−; Z) : Topop −→ GrAb.

Just as for homology, simplicial cohomology is only functorial with respect to ∆-maps. We did
not previously discuss functoriality of cellular homology.

Definition 9.13. Let X and Y be CW complexes. We say that f : X −→ Y is cellular if, for each
n ≥ 0, we have f (Xn) ⊆ Yn.

In other words, f should map the n-skeleton of X into the n-skeleton of Y. A composition of two
cellular maps is again cellular, and the identity map of any CW complex is cellular. This means
that the following definition is valid.

Definition 9.14. Let CWcell denote the category whose objects are CW complexes and whose
morphisms are cellular maps.

Proposition 9.15. Cellular homology and cohomology determine functors

Hcell
∗ : CWcell −→ GrAb, H∗cell : (CWcell)

op −→ GrAb.

The point is that you need the assumption that f is cellular in order to make sense of an induced

map Ccell
∗ (X)

f∗−→ Ccell
∗ (Y). The formula for f∗ is given in much the same way as the cellular

differential. For an n-cell en
α of X, then we set

f∗(en
α) := ∑

β n-cell of Y
n f

α,βen
β,

where n f
α,β is the degree of

Sn
α ↪→

∨
Sn ∼= Xn/Xn−1 f−→ Yn/Yn−1 ∼=

∨
Sn −→ Sn

β.

The middle map only makes sense if f is assumed to be cellular.
It is certainly a deficiency in cellular (co)homology that it is only functorial with respect to

cellular maps. For example, a famously noncellular map is the diagonal X −→ X × X, for any
space X. On the other hand, we can always use the following to replace an arbitrary map by a
cellular one.
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Theorem 9.16 (Cellular approximation, Theorem 4.8 of Hatcher). Let f : X −→ Y be a map between
CW complexes. Then f is homotopic to a cellular map f̂ : X −→ Y. Furthermore, any two such cellular
replacements for f are cellularly homotopic to each other, meaning that the homotopy h : X × I −→ Y is
cellular.

This means that if we denote by Ho(CW) the category whose objects are CW complexes and
whose morphisms are homotopy classes of (arbitrary) maps, then we have the following result.

Proposition 9.17. Cellular homology and cohomology determine functors

Hcell
∗ : Ho(CW) −→ GrAb, H∗cell : (Ho(CW))op −→ GrAb.

There is a similar story for simplicial (co)homology, using

Theorem 9.18 (Simplicial approximation, Theorem 2C.1 of Hatcher). Let f : X −→ Y be a map
between ∆-complexes. If X is a finite complex, then f is homotopic to a ∆-map after applying barycentric
subdivision to X finitely many times.

We mentioned above that cohomology is a contravariant functor. To see this, let f : X −→ Y be a
(suitable) map, and let α ∈ Cn(Y) be a cochain (in whichever variant of cohomology you prefer).
Then α is a homomorphism Cn(Y)

α−→ Z, and it can be precomposed with Cn( f ) to define

Cn(X)
f∗ //

f ∗α

77Cn(Y)
α // Z

For instance, suppose that γ ∈ π1(Y). Since γ is represented by a map S1 −→ Y, it induces
a homomorphism H∗(Y) −→ H∗(S1). Working the other way, a map X −→ S1 will induce a
homomorphism Z ∼= H1(S1) −→ H1(X). Such a homomorphism is determined by its value on a
generator, and it turns out that this defines a bijection

H1(X; Z)↔ [X, S1].

Mon, Nov. 11

Similarly, there are bijections

H2(X; Z)↔ [X, CP∞]

and

H1(X; F2)↔ [X, RP∞].

These bijections are all natural in X. If we plug in the spheres X = Sn as n varies, these bijections
correspond to the fact that the spaces S1, CP∞, and RP∞ all have homotopy groups concentrated
in a single degree. Such spaces are known as Eilenberg-Mac Lane spaces, and it can be shown
that for each abelian group G and n ≥ 1, there is a space K(G, n) whose only nontrivial homotopy
group is G, concentrated in degree n (and G can be nonabelian if n = 1). In this language, we
would say

S1 ' K(Z, 1) CP∞ ' K(Z, 2), RP∞ ' K(Z/2, 1).

For most groups and most values of n, we do not have such nice geometric models.
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9.2. Cup products. It turns out that, for any space X and any commutative ring R of coefficients,
H∗(X; R) will be a graded ring. To say it is a graded ring means that

(1) The unit 1 is in degree 0 and
(2) If x and y are in degree n and k, respectively, then x · y is in degree n + k.

The unit is quite easy to describe: define u ∈ C0(X; R) = Hom(C0(X), R) to be the function
which takes value 1 on each basis element.

Lemma 9.1. u is a cocycle and therefore determines a cohomology class.

Proof. In any of our three versions of homology, the differential δ1 : C1(X) −→ C0(X) is given
by δ1(e) = e1 − e0. Since u(e1) = 1 = u(e0), we conclude that δ0(u)(e) = 0 for all e, so that
δ0(u) = 0. �

Note that since there is no δ−1 coming into C0(X; R), it follows that u is a nontrivial cohomology
class, and this will play the role of the unit.

We are left with specifying the multiplication

Hn(X; R)⊗Hk(X; R) −→ Hn+k(X; R).

There are several ways to do this. One way is to first write down an “external” product

Hn(X; R)⊗Hk(Y; R) ×−→ Hn+k(X×Y; R).

This is also known as the cross product.
Let’s consider first cellular cohomology. Recall that we have an isomorphism C∗(X)⊗ C∗(Y) ∼=

C∗(X×Y). Let ϕ be the composition

C∗(X; R)⊗ C∗(Y; R) = Hom(C∗(X), R)⊗Hom(C∗(Y), R) −→ Hom(C∗(X)⊗ C∗(Y), R⊗ R)
∼= Hom(C∗(X×Y), R⊗ R) −→ Hom(C∗(X×Y), R),

where the last map is simply induced by the multiplication R⊗ R −→ R in the ring R. Then we
define the external product as

H∗(X; R)⊗H∗(Y; R) −→ H∗(C∗(X; R)⊗ C∗(Y; R))
H∗(ϕ)−−−→ H∗(X×Y; R).

Wed, Nov. 13

Finally, the cup product in cellular cohomology is defined as the composition

H∗(X; R)⊗H∗(X; R) −→ H∗(X× X; R) ∆∗−→ H∗(X; R).

However, recall that the diagonal ∆ : X −→ X × X is not a cellular map, so in order to actually
compute the cup product, a cellular approximation of the diagonal must be used.

Proposition 9.19. The cup product makes H∗(X; R) into a graded ring.

Proof. We must check that the cup product is associative and unital. To show that u is a left unit,
we first note that u can also be described as u = c∗(1), where c : X −→ ∗. Note also that

X ∆−→ X× X c×id−−→ ∗× X = X
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is the identity map of X. Then the commutative diagram

H0(∗; R)⊗Hn(X; R) c∗⊗id //

��

H0(X)⊗Hn(X; R)

��
Hn(∗ × X; R)

(c×id)∗ //

**

Hn(X× X; R)

��
Hn(X; R)

shows that u · x = x. A similar argument shows that x · u = x. Associativity similarly follows
from the space-level commutative diagram

X ∆ //

∆
��

X× X

id×∆
��

X× X
∆×id
// X× X× X.

�

Proposition 9.20. The cup product is natural.

Example 9.21. X = S1. This is not a very interesting example, since there is no room for a nontriv-
ial product. If x is a generator in degree 1, then x2 must be zero since H2(S1) = 0. It follows that
the cohomology ring is

H∗(S1; Z) ∼= Z[x]/x2.
This is often called an exterior algebra.

Example 9.22. For a similar reason, we see that

H∗(Sn; Z) ∼= Z[xn]/x2
n,

where xn has degree n.

Example 9.23. X = T2 = S1 × S1. We know that the cohomology is free abelian on generators w0,
x1, y1, and z2, where the subscript indicates the degree of the class. Thus the only question about
the ring structure is what are the products x2

1, y2
1, and x1y1.

Let pi : T2 −→ S1, for i = 1, 2 be the projection maps. These induce ring homomorphisms

p∗i : H∗(S1) −→ H∗(T2).

Since the projection is cellular, we can calculate these maps explicitly. We claim that p∗1(v1) = x1
and p∗1(v1) = y1. To see this, note that we can take v1 to be the dual basis element to the 1-cell of
S1, so that v1(e1) = 1. Similarly, we take x1 to be dual to e1

1,0 and y1 to be dual to e1
0,1. Then

p∗1(v1)(ie1
1,0 + je1

0,1) = v1(i(p1)∗(e1
1,0) + j(p1)∗(e1

0,1)) = v1(ie1 + j0) = i,

so that p∗1(v1) = x1.
Now since the pi are ring homomorphisms and v2

1 = 0 in H∗(S1), we conclude that x1 and y1
both square to zero in H∗(T2). It only remains to determine the product x1 · y1.

Fri, Nov. 15

Recall that, by definition, x1 · y1 = ∆∗(x1 × y1). Here x1 × y1 ∈ H2(T2 × T2). In order to
calculate the cup product, we must take a cellular approximation of the diagonal on T2. Since
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T2 = S1× S1, we can start with a cellular approximation ∆̃S1 of the diagonal on S1 and then define
our approximation on T2 to be

∆̃T2 : T2 = S1 × S1 ∆̃S1×∆̃S1−−−−→ S1 × S1 × S1 × S1 id×t×id−−−−→ S1 × S1 × S1 × S1 = T2 × T2.

The approximation ∆̃S1 can be taken from an approximation on I, and we see that the induced
map on chains is e1 7→ e1

1,0 + e1
0,1. Recalling that t : S1 × S1 −→ S1 × S1 induces the map

e1
1,0 7→ e1

0,1, e1
0,1 7→ e1

1,0

on chains, it follows that ∆̃T2 induces the map

e2
1,1 7→ e2

1,1,0,0 − e2
0,1,1,0 + e2

1,0,0,1 + e2
0,0,1,1

on C2. Now we have

(x1 · y1)(e2
1,1) := (x1 × y1)(e2

1,1,0,0 − e2
0,1,1,0 + e2

1,0,0,1 + e2
0,0,1,1)

= x1(e1
0,1)y1(e1

1,0)− x1(e1
1,0)y1(e1

0,1) = 0 · 0− 1 · 1 = −1.

It follows that x1 · y1 = ±z2 (depending on which generator we choose z2 to be).

Another (easier) way to think about the above example is using the Künneth theorem. First, as
we indicated in the previous example, the projections pX and pY induce ring maps

p∗X : H∗(X) −→ H∗(X×Y), p∗Y : H∗(Y) −→ H∗(X×Y).

Proposition 9.24. Let R
f−→ T and S

g−→ T be ring homomorphisms (all rings are assumed to be commuta-
tive). Then there is a unique ring homomorphism making the following diagram commute:

R f

((η1 ''
R⊗ S // T

S g

66
η2 88

In other words, R⊗ S is the coproduct in the category of commutative rings. Here, η1(r) = r⊗ 1
and η2(s) = 1⊗ s. The multiplication on R⊗ S is given on simple tensors by

(r1 ⊗ s1) · (r2 ⊗ s2) := r1r2 ⊗ s1s2

and then extended linearly to all of R⊗ S. The unit is 1⊗ 1.

Proof. Given f and g, then ϕ : R⊗ S −→ T may be defined on simple tensors by the formula

ϕ(r⊗ s) = f (r)g(s).

This clearly makes the diagram commute, and it is simple to check that this is a ring homomor-
phism. �

Note that if R∗ and S∗ are graded rings, the same result holds, but signs must be introduced
appropriately. For instance, the multiplication on R∗ ⊗ S∗ is given by

(r1 ⊗ s1) · (r2 ⊗ s2) := (−1)deg(s1)deg(r2)r1r2 ⊗ s1s2.

In order to apply this, we first need to show that cohomology is a commutative ring (in the
graded sense).

Definition 9.25. A graded ring A∗ is said to be (graded-)commutative if

x · y = (−1)aby · x,

where a = deg(x) and b = deg(y).
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Proposition 9.26. The cohomology ring is graded commutative.

Proof. This follows from a combination of topological and algebraic results. The topological result
is that the diagram

X ∆ //

∆ ##

X× X

t
��

X× X

commutes, where t is the transposition. The algebraic result is that the square

Cn(X)⊗ Ck(Y) //

τ
��

Cn+k(X×Y)

t∗
��

Ck(Y)⊗ Cn(X) // Cn+k(Y× X)

commutes, where τ(x⊗ y) = (−1)nky⊗ x. The reason for the sign (−1)nk is as follows. Say en
α is

an n-cell in X and ek
β is a k-cell in Y. We wish to know what is the coefficient of en+k

β×α in t∗(e
nk
α×β).

Recall that this coefficient is the degree of the map

Sn+k ↪→
∨

Sn+k ∼= skn+k(X×Y)/ skn+k−1(X×Y)
t−→ skn+k(Y× X) skn+k−1(Y× X) ∼=

∨
Sn+k −→ Sn+k.

But this map is the permutation of coordinates

Sn+k = Sn ∧ Sk ∼= Sk ∧ Sn = Sn+k,

which has degree (−1)nk since it can be expressed as nk iterations of a twist S1 ∧ S1 ∼= S1 ∧ S1.
Under an identification of S1 ∧ S1 with S2, this twist corresponds to reflection across a hyperplane,
which has degree −1. �

Mon, Nov. 18

Applying the previous result to the ring maps p∗X and p∗Y defines a ring homomorphism

H∗(X)⊗H∗(Y) −→ H∗(X×Y).

A cohomological version of the Künneth theorem is

Theorem 9.27 (Theorem 3.16 of Hatcher). Suppose that the groups Hk(Y; Z) are finitely generated free
abelian groups for all k. Then the cross product

H∗(X; Z)⊗Z H∗(Y; Z) −→ H∗(X×Y; Z)

is an isomorphism of rings.

Of course, by symmetry the hypothesis on H∗(Y; Z) could equally well be placed on H∗(X; Z)
instead.

Example 9.28. Turning back to X = T2, this result tells us that

H∗(T2; Z) ∼= (Z[x1]/x2
1)⊗Z (Z[y1]/y2

1)
∼= Z[x1, y1]/(x2

1, y2
1).

In particular, x1y1 6= 0 in this ring.
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It is also possible to describe the cup product for singular or simplicial cohomology. To do this,
we introduce some notation. Given an n-simplex σ : ∆n −→ X and some 0 ≤ i ≤ n, let

di
l(σ) := σ ◦ dn ◦ dn−1 ◦ · · · ◦ dn−i+1 = σ|[v0,...,vi ]

be the “left” i-dimensional face and similarly

di
r(σ) := σ ◦ d0 ◦ · · · ◦ d0 = σ|[vn−i ,...,vn ]

be the “right” i-dimensional face. Then given α ∈ Hn(X; R) and β ∈ Hk(X; R), we define α ∪ β on
an (n + k)-simplex σ by

(α ∪ β)(σ) := (−1)nkα(dn
l (σ)) · β(dk

r(σ)).

Proposition 9.29. The above cup product defines a chain map

C∗(X; R)⊗ C∗(X; R) −→ C∗(X; R),

where C∗(X; R) means either singular or simplicial cochains.

Proof. We must check the formula

∂(α ∪ β) = ∂(α)β + (−1)nα∂(β)

if α ∈ Cn(X; R) and β ∈ Ck(X; R). Recall from (9.1) that ∂(α) = (−1)n+1α ◦ ∂. For simplicity, we
consider the case n = 2 and k = 1. Then

∂3(α ∪ β)(σ) = (α ∪ β)(∂4(σ)) = (α ∪ β)(σ ◦ d0 − σ ◦ d1 + σ ◦ d2 − σ ◦ d3 + σ ◦ d4)

= (α ∪ β)(σ|[v1,v2,v3,v4 ]
− σ|[v0,v2,v3,v4 ]

+ σ|[v0,v1,v3,v4 ]
− σ|[v0,v1,v2,v4 ]

+ σ|[v0,v1,v2,v3 ]
)

= α(σ|[v1,v2,v3 ]
)β(σ|[v3,v4 ]

)− α(σ|[v0,v2,v3 ]
)β(σ|[v3,v4 ]

) + α(σ|[v0,v1,v3 ]
)β(σ|[v3,v4 ]

)

− α(σ|[v0,v1,v2 ]
)β(σ|[v2,v4 ]

) + α(σ|[v0,v1,v2 ]
)β(σ|[v2,v3 ]

)

On the other hand,

[∂2(α)β](σ) = −∂2(α)(σ|[v0,v1,v2,v3 ]
)β(σ|[v3,v4 ]

) = α(∂3(σ|[v0,v1,v2,v3 ]
))β(σ|[v3,v4 ]

)

= α(σ|[v1,v2,v3 ]
)β(σ|[v3,v4 ]

)− α(σ|[v0,v2,v3 ]
)β(σ|[v3,v4 ]

) + α(σ|[v0,v1,v3 ]
)β(σ|[v3,v4 ]

)− α(σ|[v0,v1,v2 ]
)β(σ|[v3,v4 ]

)

and
[α∂1(β)](σ) = α(σ|[v0,v1,v2 ]

)∂1(β)(σ|[v2,v3,v4 ]
) = α(σ|[v0,v1,v2 ]

)β(∂2(σ|[v2,v3,v4 ]
))

= α(σ|[v0,v1,v2 ]
)β(σ|[v3,v4 ]

)− α(σ|[v0,v1,v2 ]
)β(σ|[v2,v4 ]

) + α(σ|[v0,v1,v2 ]
)β(σ|[v2,v3 ]

)

�

Wed, Nov. 20

Example 9.30. X = RP2. Recall that the projective plane
was built from two simplices as in the picture to the right.
Taking coefficients in F2, this gives the chain complex

y2 y2

y3

y1

y3

z1

z2

x2

x1

x1

x2

C∆
2 (RP2)⊗F2

∂2 // C∆
1 (RP2)⊗F2

∂1 // C∆
0 (RP2)

F2{z1, z2} 1 1
1 1
1 1


// F2{y1, y2, y3} (

0 1 1
0 1 1

) // F2{x1, x2}
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and therefore the cochain complex

C2
∆(RP2; F2) C1

∆(RP2; F2)
∂2

oo C0
∆(RP2; F2)

∂1
oo

F2{z∗1 , z∗2} F2{y∗1 , y∗2 , y∗3}(
1 1 1
1 1 1

)oo F2{x∗1 , x∗2}.0 0
1 1
1 1


oo

Representatives for the nonzero cohomology classes are

α0 = [x∗1 + x∗2 ], α1 = [y∗1 + y∗2 ], α2 = [z∗1 ] = [z∗2 ].

We want to establish that α2
1 = α2, or, equivalently, that α2

1 6= 0. We have

α2
1(z1) := α1(y1)α1(y3) = 0

and
α2

1(z2) := α1(y1)α1(y2) = 1.
It follows that α2

1 = α2.
More generally,

H∗(RPn; F2) ∼= F2[x1]/xn+1
1 , H∗(RP∞; F2) ∼= F2[x1].

For complex projective space, we know that the cohomology (integrally) is concentrated in even
degrees, and there the answer is

H∗(CPn; Z) ∼= Z[x2]/xn+1
2 , H∗(CP∞; Z) ∼= Z[x2].

Example 9.31. We can use the cohomology ring structure to show that CP2 is not homotopy equiv-
alent to S2 ∨ S4. We know they have the same cohomology groups, but a homotopy equivalence
also induces an isomorphism of cohomology rings, so it suffices to show that

H∗(S2 ∨ S4; Z) 6∼= H∗(CP2; Z) ∼= Z[z2]/z3
2.

The long exact sequence for the pair (S2 ∨ S4, S2) shows that the restriction H2(S2 ∨ S4; Z)
∼=−→

H2(S2; Z) is an isomorphism.
Write H2(S2 ∨ S4; Z) ∼= Z{y2} and H4(S2 ∨ S4; Z) ∼= Z{y4}. Note that we have a retraction

S2 ι−→ S2 ∨ S4 p−→ S2. By functoriality, we also get a retraction on cohomology,

H∗(S2; Z)
p∗
//

id

))

∼=
��

H∗(S2 ∨ S4; Z)
ι∗ //

∼=
��

H∗(S2; Z)

∼=
��

Z[x2]/x2
2

//

id

55
Z{y2, y4} // Z[x2]/x2

2

Since ι∗ is an isomorphism on H2, it follows that the same is true for p∗. In particular p∗(x2) = ±y2.
It follows that

y2
2 = (p∗(x2))

2 = p∗(x2
2) = 0.

It follows that H∗(S2 ∨ S4; Z) 6∼= H∗(CP2; Z).
Note that this shows that the attaching map S3 η−→ S2 for the 4-cell in CP2 is not null-homotopic.

If η were null-homotopic, this would give a homotopy equivalence CP2 ' S2 ∨ S4.
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The ideas in the previous example show more generally that the inclusions of the wedge sum-
mands induce a ring isomorphism

H̃∗(X ∨Y) ∼= H̃∗(X)× H̃∗(Y).

Fri, Nov. 22

One classical application is to the study of division algebras over R. We emphasize that we do
not assume the division algebras to be associative.

Proposition 9.32. If Rn is an R-division algebra, then n must be a power of 2.

Proof. Let µ : Rn ×Rn −→ Rn be an R-division algebra multiplication. Then µ is linear in each
variable, so that we get an induced map

ϕ : RPn−1 ×RPn−1 −→ RPn−1.

Passing to F2-cohomology, this gives a ring homomorphism

F2[z1]/zn
1 −→ F2[x1, y1]/(xn

1 , yn
1).

It follows that ϕ∗(z1) = nxx1 + nyy1 for some nx, ny ∈ F2.
To determine the coefficients nx and ny, let u : ∗ ↪→ Rn denote the inclusion of 1. Then the

composition

∗ ×Rn u×id−−→ Rn ×Rn µ−→ Rn

is the identity. Passing to cohomology, it follows that ny = 1. Using the unit in the other variable
shows that nx = 1. We have shown that ϕ∗(z1) = x1 + y1. We then get

0 = ϕ(zn
1) = ϕ(z1)

n = (x1 + y1)
n =

n

∑
k=0

(
n
k

)
xk

1yn−k
1 =

n−1

∑
k=1

(
n
k

)
xk

1yn−k
1 .

Since the monomials xk
1yn−k

1 , for various k, are linearly independent, it follows that each (n
k) must

be zero.

Lemma 9.2 (Lucas’s Theorem). Let n = a0 + a12 + a222 + · · ·+ ai2i and k = b0 + b12 + b222 + · · ·+
bj2j be the 2-adic expansions. Then (

n
k

)
≡∏

i

(
ai

bi

)
(mod 2).

Since ai and bi are in {0, 1}, we see that(
ai

bi

)
=

{
0 ai ≡ 0 & bi ≡ 1
1 else. .

Now we want to have (n
k) ≡ 0 for all 0 < k < n. By the above, this means that for some i we

must have ai ≡ 0 and bi ≡ 1. But if n is not a power of 2, it is possible to find a k that violates this
condition. For instance, taking n = 5 = 1 + 22, we can take k = 22. �

In fact, the statement can be improved to show that the only possible values for n are 1, 2,
4, and 8, but this requires more advanced techniques (K-theory!). This was proved in 1958 by
Kervaire and Milnor, but is often attributed to Adams, since it follows from his Hopf Invariant One
Theorem (1960). It had already been known since the 1920’s that the only real normed division
algebras are R, C, H, and O (Hurwitz’s Theorem) and since the 19th century that R, C, and H are
the only associative division algebras (Frobenius’s Theorem).
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9.3. The Realization Problem. We have seen a few examples of cohomology rings. We also know
how to combine examples to form new ones (by the Kunneth theorem, H∗(X × Y) ∼= H∗(X) ⊗
H∗(Y), at least up to torsion information). A reasonable to question to ask is

Question 9.33. Which rings can arise as the cohomology ring of a space?

We have some restrictions already: we know the cohomology ring of a space is always graded-
commutative. For instance, working with coefficients in Z, there is the following result, which we
will address next class.

Proposition 9.34. If H∗(X; Z) ∼= Z[xn] for some n, then n is either 2 or 4.

This was proved by Steenrod in 1960. If one allows multiple polynomial generators, there are
more examples:

Example 9.35.
(1) Let Grn(C∞) denote the Grassmannian of n-planes inside of C∞. This space is also known

as BU(n), the classifying space for the (unitary) Lie group U(n). Then

H∗(Grn(C
∞); Z) ∼= Z[x2, x4, . . . , x2n].

(2) Let Grn(H∞) denote the Grassmannian of n-planes inside of H∞. This space is also known
as BSp(n), the classifying space for the (symplectic) Lie group Sp(n). Then

H∗(Grn(H
∞); Z) ∼= Z[x4, x8, . . . , x4n].

(3) There is also a classifying space BSU(n) for the special unitary group, and

H∗(BSU(n); Z) ∼= Z[x4, . . . , x2n].

It turns out that these are essentially all of the examples. More precisely,

Theorem 9.36 (Andersen-Grodal, 2008). If H∗(X; Z) is a finitely generated polynomial algebra over Z,
then H∗(X; Z) is a tensor product of the above examples.

This theorem had been known since roughly 1980 with some additional hypotheses on the ring.
In fact, Andersen-Grodal give a complete characterization of possible (even) degrees of polyno-
mial generators for any coefficients R. For example, over F3, the polynomial algebra F3[x4, x12] is
realizable, although this is not true over Z. Similarly, F5[x8] is realizable over F5 but not Z.

In the case where R is a field of characteristic zero, it had already been proved by Serre in
his 1951 thesis that every polynomial algebra on even degree generators can be realized as the
cohomology of a space.

The more general question of which rings can arise is much more difficult and is an open prob-
lem in general.

9.4. Cohomology Operations. We saw that one benefit of the ring structure on cohomology is
that it allowed us to distinguish, for example, CP2 from S2 ∨ S4, even though they have the same
homology. However, if we suspend both spaces, we run into trouble.

Proposition 9.37. For any space X, the cohomology ring H∗(ΣX) is trivial, in the sense that all cup
products of classes in positive degrees vanish.

The point is that the cup product is defined using the diagonal. But the diagonal map S1 −→
S1 ∧ S1 ∼= S2 is null-homotopic. This implies that the diagonal on ΣX = S1 ∧ X is also null-
homotopic.

Mon, Nov. 25
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On the other hand, we do not expect suspension to somehow detach the top cell of CP2, and
we would like to see this somehow reflected in cohomology. This can be done by considering
cohomology operations.

Example 9.38. For any p, consider the short exact sequence Z/pZ
p−→ Z/p2Z −→ Z/pZ. This

induces a long exact sequence in cohomology

−→ Hn(X; Fp) −→ Hn(X; Z/p2Z) −→ Hn(X; Fp)
δ−→ Hn+1(X; Fp) −→ . . . .

Thus the connecting homomorphism is a natural transformation Hn(−; Fp) −→ Hn+1(−; Fp). It is
often called the Bockstein homomorphism and denoted by β. It can be shown that this has some
important properties, for instance

(1) For any degree 1 class x, we have β(x) = x2.
(2) β commutes with suspension, meaning that β(Σx) = Σβ(x).

In fact, cohomology operations are well understood.

Theorem 9.39 (Steenrod). There are natural (Steenrod) cohomology operations

Sqn : Hk(−; F2) −→ Hk+n(−; F2)

for all n and k such that
(1) If x is of degree n then Sqn(x) = x2

(2) If x is of degree < n, then Sqn(x) = 0
(3) The Sqn commute with suspension
(4) Sq0 is the identity and Sq1 is the Bockstein
(5) The Cartan formula holds:

Sqn(x ∪ y) = ∑
i

Sqi(x) ∪ Sqn−i(y).

We can use cohomology operations in F2-cohomology to distinguish ΣCP2 from S3 ∨ S5. Both
spaces have classes x3 and x5 in degrees 3 and 5, respectively. It is easy to see that in S3 ∨ S5, we
have Sq2(x3) = 0, since the class x3 is pulled back from the collapse map S3 ∨ S5 −→ S3.

However, in ΣCP2, we have

Sq2(x3) = Sq2(Σx2) = ΣSq2(x2) = Σx2
2 = Σx4 = x5.

It follows that we cannot have a homotopy equivalence between ΣCP2 and S3 ∨ S5.
We can ask what happens when we compose two or more cohomology operations. The main

formula used to understand these compositions is the Adém relation

Sqn ◦ Sqk =
bn/2c

∑
j=0

(
k− j− 1

n− 2j

)
Sqn+k−j ◦ Sqj

for n < 2k. For instance, these relations give Sq1Sq1 = 0, Sq1Sq2 = Sq3, and Sq2Sq2 = Sq3Sq1. In
fact, it can be shown that

Proposition 9.40. The operation Sqn is indecomposable if and only if n is a power of 2.

For instance, we have the relation

Sq6 = Sq5Sq1 + Sq2Sq4.

Corollary 9.41. If H∗(X; F2) ∼= F2[xn]/xr
n, where r ∈ {3, 4, . . . , ∞}, then n must be a power of 2.
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Proof. If n is not a power of 2, then we can decompose Sqn into a linear combination of nontrivial
compositions of squaring operations. But we must have Sqn(xn) = x2

n, which would imply that
x2

n is a sum of classes, each of which is an operations applied to a class in degree strictly between
n and 2n. But there are no such classes by assumption. �

There are also operations in H∗(−; Fp).

Theorem 9.42 (Steenrod). There are natural (Steenrod) cohomology operations

Pn : Hk(−; Fp) −→ Hk+2n(p−1)(−; Fp)

for all n and k such that
(1) If x is of degree 2n then Pn(x) = xp

(2) If x is of degree < 2n, then Pn(x) = 0
(3) The Pn commute with suspension
(4) P0 is the identity
(5) The Cartan formula holds:

Pn(x ∪ y) = ∑
i

Pi(x) ∪ Pn−i(y).

There is a similar Adém relation:

PnPk =
ba/pc

∑
j=0

(
(p− 1)(k− j)− 1

n− pj

)
Pn+k−jPj,

and it can be used to show that Pn is indecomposable if and only if n is a power of p.

Corollary 9.43. If H∗(X; Fp) ∼= Fp[xn]/xr
n, where r ∈ {p + 1, p + 2, . . . , ∞}, then n must be of the form

n = 2pjm, where m | (p− 1).

Proof. Note first that, as we mentioned last time, n must be even. Suppose n = 2k. Now we must
have Pk(xn) = xp

n 6= 0. If k is not a power of p, then we can decompose Pk, so that some Ppi
(xn)

must be nonzero for some pi < k. This class lives in degree n + 2pi(p − 1). But the nonzero
cohomology of X lies in degrees that are multiples of n, so n must divide 2pi(p − 1). Since n is
even and p is odd, we conclude that n is of the stated form. �

Proof of Proposition 9.34. If H∗(X; Z) is polynomial on a class xn, the same is true after passage to
F2 or F3 coefficients. The F2-case tells us that n must be a power of 2. The F3-case tells us that n is
either of the form 2 · 3j or 4 · 3j. It follows that n = 2 and n = 4 are the only possibilities. �

Mon, Dec. 2

9.5. Orientations. When we restrict our attention to manifolds, we can say quite a bit more about
cohomology. We start by recalling

Definition 9.44. A (topological) n-manifold M is a Hausdorff, second-countable space such that
each point has a neighborhood homeomorphic to an open subset of Rn.

Last semester, you discussed orientability for surfaces (2-manifolds), and we can now give a
general, rigorous treatment. The two main properties we would want of an orientation are

(1) an orientation should be determined by a coherent family of “local” orientations around
each point x ∈ M

(2) an orientation of Rn should be preserved by a rotation but reversed by a reflection.
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Since a manifold is locally like Rn, we should first define an orientation of Rn. There are many
ways to do this, but it will be convenient for us to give a definition in terms of homology. With
that in mind, we note that for any x ∈ Rn, the relative homology group Hn(Rn, Rn − {x}; Z)
is isomorphic to Z. We then define an orientation of Rn at x to be a choice of generator of
Hn(Rn, Rn − {x}; Z) ∼= Z. Note that since rotations have degree 1 and reflections have degree
−1, our definition satisfies condition (2).

Since a manifold M is locally like Rn, this allows us to define local orientations on any M. The
key is that excision shows that

Hn(M, M− {x}; Z) ∼= Hn(U, U − {x}; Z) ∼= Hn(R
n, Rn − {x}; Z) ∼= Z.

In fact, it will be convenient for us to consider a general commutative ring R as the coefficient
group.

Definition 9.45. Let R be a commutative ring and M an n-manifold. Then, for any x ∈ M, a local
R-orientation at x is a choice µx of (R-module) generator of Hn(M, M− {x}; R).

This gives us the local definition. Now we want to say that M is R-orientable if there is a
compatible family of orientations.

Definition 9.46. An R-orientation of M is an open cover U = {U} of M together with a homology
class µU ∈ Hn(M, M−U; R) for each U ∈ U such that for each x ∈ U, µU restricts to a (R-module)
generator under Hn(M, M−U; R) −→ Hn(M, M−{x}; R) ∼= R. We also require that if U∩V 6= ∅
for U, V ∈ U , then µU and µV determine the same element of Hn(M, M− (U ∩V); R). We say that
M is R-orientable if there exists an R-orientation.

An equivalent definition is to say that an R-orientation is a collection µx of local orientations
such that each point x has a neighborhood U and class µU restricting to each µy for all y ∈ U.

The two choices of R of primary interest are R = Z and R = F2. In the case R = Z, we simply
say “orientable” without referencing the coefficients.

Note that a Z-orientation µ of M determines an R-orientation of M for any R, using the ring
homomorphism Z −→ R, 1 7→ 1. However, this is not an if and only if.

Proposition 9.47. Any manifold has a (unique) F2-orientation.

Proof. The point is that orientablity is about being able to make consistent choices of genera-
tors. But there is always a canonical choice of generator of a 1-dimensional F2-vector space: the
(unique) nonzero element. �

Recall that a closed manifold is one that is compact and without boundary.

Theorem 9.48. Let M be a connected, closed n-manifold. Then either
(1) M is orientable and Hn(M; Z) −→ Hn(M, M− {x}; Z) ∼= Z is an isomorphism for all x ∈ M

OR
(2) M is nonorientable and Hn(M; Z) = 0.

Working with F2-coefficients, it turns out that Hn(M; F2) ∼= F2 for any M, corresponding to the
fact that every manifold is F2-orientable. See [Hatcher, Theorem 3.26] for the statement over an
arbitrary coefficient ring. In the orientable case, a generator of Hn(M; Z) is called a fundamental
class or orientation class for M. Note that there are two such classes (the two choices of generator).

The key step in the proof is to show that for connected noncompact n-manifolds N, we have
H̃n(N; Z) = 0. Applying this in the case N = M− {x}, we get that

Hn(M; Z) −→ Hn(M, M− {x}; Z) ∼= Z

is injective. This already shows that Hn(M; Z) must be either Z or 0.
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Example 9.49. In Example 6.5, we computed that

Hn(RPn; Z) ∼=
{

Z n odd
0 n even .

It follows that RPn is orientable if and only if n is odd.

Example 9.50. You saw in HW 6 that if M is a surface, then H2(M) is Z if M is Mg and orientable
and is 0 if M = Ng is nonorientable.

It is also interesting to note that every nonorientable manifold has a closely associated orientable
manifold, the orientation cover. For any manifold M, define M̃ to be

M̃ = {(x, µx) | x ∈ M, µx ∈ Hn(M, M− x) a generator}.
We can topologize M̃ by covering it by open sets (U, µU). Then one can show that the map M̃ −→
M sending (x, µx) to x is a double cover. Since M̃ is locally homeomorphic to M, the homology
class µx also defines a local orientation for M̃ at (x, µx). Then the assignment (x, µx) 7→ µx is a
global orientation for M̃, so that it is orientable.

Proposition 9.51 (Proposition 3.25 of Hatcher). Suppose that M is connected. Then either M̃ is con-
nected and M is nonorientable, or M̃ ∼= MqM and M is orientable.

Example 9.52. When n is even, the classification of coverings tells us that the orientation double
cover for RPn must be the universal cover Sn −→ RPn.

Example 9.53. For the Klein bottle K, we have the orientation double cover T2 −→ K.

Example 9.54. Consider a nonorientable surface Ng of genus g. The orientation cover Ñg must
be Mk for some k. We can use Euler characteristics to solve for k. We know that χ(Ng) = 2− g
and χ(Mk) = 2 − 2k. Now the Euler characteristic of a two-sheeted cover is twice the Euler
characteristic of the base space. So we have

2− 2k = 2 · (2− g).

Solving for k gives k = g− 1. Thus we have an orientation double cover

Mg−1 −→ Ng

generalizing the case of T2 −→ K when g = 2 and S2 −→ RP2 when g = 1.

Wed, Dec. 4

9.6. Poincaré Duality. Our last main topic for the course is duality, given as the following result.

Theorem 9.55 (Poincaré Duality). Let M be a closed, orientable n-manifold. Then there is an isomor-
phism

D : Hk(M; Z) ∼= Hn−k(M; Z)

for all k.

Under this isomorphism, the unit 1 ∈ H0(M) corresponds to the fundamental class µ ∈ Hn(M).
The map D can be described in terms of the cap product.

Definition 9.56. The cap product in the singular/simplicial theories is a map

Hp(X; Z)⊗Hq(X; Z)
∩−→ Hq−p(X; Z)

defined when q ≥ p. On the level of cochains, the formula is

α ∩ σ = α(σ[v0,...,vp])σvp,...,vq .
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Of course, it must be checked that this formula on the level of chains/cochains is compatible
with differentials and therefore gives a well-defined cap product. More precisely, we need to
verify

∂p(α) ∩ σ + (−1)pα ∩ ∂q(σ) = α(σ[v0,...,vp])∂q−p(σ[vp,...,vq]).
We do this in the case p = 1 and q = 2. We have

∂1(α) ∩ σ = ∂1(α)(σ[v0,v1,v2])[v2] = α(∂2(σ[v0,v1,v2]))[v2]

= α(σ[v1,v2])[v2]− α(σ[v0,v2])[v2] + α(σ[v0,v1])[v2]

α ∩ ∂2(σ) = α ∩ σ[v1,v2] − α ∩ σ[v0,v2] + α ∩ σ[v0,v1]

= α(σ[v1,v2])[v2]− α(σ[v0,v2])[v2] + α(σ[v0,v1])[v1]

and
α(σ[v0,v1])∂1(σ[v1,v2]) = α(σ[v0,v1])[v2]− α(σ[v0,v1])[v1]

Putting these together gives

∂1(α) ∩ σ− α ∩ ∂2(σ) = ∂1(α ∩ σ)

as desired.

Fri, Dec. 06
We can also define the cap product in the cellular theory. Again, this requires a cellular approx-

imation ∆̃ of the diagonal ∆ (boooo!!). Given such an approximation, the cap product is induced
from

C∗(X)⊗C∗(X)
id⊗∆̃∗−−−→ C∗(X)⊗C∗(X×X) ∼= C∗(X)⊗C∗(X)⊗C∗(X)

ev⊗id−−−→ Z⊗C∗(X) ∼= C∗(X).

Here ev : C∗(X)⊗ C∗(X) −→ Z is the evaluation map, defined by ev(α⊗ σ) = α(σ). The evalua-
tion is also often written using brackets, so that

〈α, σ〉 := α(σ) = ev(α⊗ σ).

There is an important relation of the cap product to the cup product, which comes immediately
from the definitions:

Proposition 9.57. For α ∈ Hp(X), β ∈ Hq(X), and σ ∈ Hp+q(X), we have

〈α ∪ β, σ〉 = (−1)pq〈β ∪ α, σ〉 = 〈α, β ∩ σ〉 ∈ Z.

Now that we have defined the cap product, we can define the map D of Theorem 9.55. We
assume that M is closed and orientable, so that according to Theorem 9.48 it has a fundamental
class µM ∈ Hn(M; Z). Then we define

D(α) := α ∩ µM ∈ Hn−k(M; Z).

Although we are really interested in the case of M compact, we will consider the more general
case in which M is not necessarily compact. However, in the more general case the cohomology
groups do not agree with the homology groups. For example, the noncompact 1-manifold N = R

does not satisfy the Poincaré duality formula. In order to deal with the noncompact case, we need
a new idea, that of compactly supported cohomology. The idea, at least in the simplicial/singular
context, is to consider only cochains which are “compactly supported” meaning they are nonzero
on only finitely many simplices.

For a compact subspace K ⊂ N, we can consider the cohomology group Hp(N, N − K; R). We
think of this as cohomology supported on K. Now if K ⊆ L, we have (N − L) ⊆ (N − K) and
therefore a homomorphism

Hp(N, N − K; R)
fK,L−−→ Hp(N, N − L; R).
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The idea of compactly supported cohomology is to take the “union” of these groups as K varies
over the compact subsets of N.

Definition 9.58. We define the compactly supported cohomology group by

Hp
c (N; R) := lim−→

K
Hp(N, N − K; R).

Here the symbol lim−→K
means “direct limit”. This can be characterized by a universal property

(the universal target of all of the groups Hp(N, .N − K; R)). More concretely, this can be described
as the quotient of the direct sum

⊕
K Hp(N, N − K; R) by elements of the form α− fK,L(α).

Some key properties of compactly supported cohomology are

(1) If N is compact, then Hp
c (N; R) ∼= Hp(N; R) since N is a maximal element of the K’s.

(2) Let N̂ be the one-point compactification of N. In the case that N̂ is a manifold, so that
∞ ∈ N̂ has a neighborhood homeomorphic to Dn, there is an identification

Hp
c (N; R) ∼= H̃p(N̂; R).

This gives, for example, that

Hp
c (R

n; R) ∼= H̃p(Sn; R) ∼=
{

R p = n
0 else.

On the other hand, the assumption that N̂ is a manifold is certainly restrictive. For example,

consider N = Rn \ {0}. Then R̂n \ {0} is the quotient of Sn in which the north and south poles get
identified. The reduced cohomology of this quotient does not agree with the compactly supported
cohomology of Rn \ {0}.

Theorem 9.59 (Generalized Poincaré Duality). Let N be an R-oriented n-manifold. Then there is an
isomorphism

D : Hk
c(N; R) −→ Hn−k(N; R)

for all k.

Mon, Dec. 9

Sketch. The general strategy is as follows

(1) Prove the theorem in the case N = Rn. We have already seen above that the groups are
abstractly isomorphic in this csae.

(2) Use a Mayer-Vietoris argument to deduce the result for U ∪V assuming it holds for U, V,
and U ∩V. This is the most difficult part of the argument. See [Hatcher, Lemma 3.36].

(3) Show that if {Ui} is a collection of nested open sets and the result holds for each, then it
holds for the union.

(4) Use the previous results to show the theorem holds for any open subset of Rn

(5) Use Zorn’s Lemma to do the general case. Let V be a maximal subset for which the theorem
holds and let x ∈ N − V. Then x has a neighborhood U homeomorphic to Rn, so the
theorem holds on U. But then it must also hold on V ∪U, contradicting maximality. So V
must be all of N.

�

Corollary 9.60. A closed, odd-dimensional manifold M has Euler characteristic χ(M) = 0.
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Proof. Since any manifold is F2-orientable, we apply the Poincaré Duality theorem with F2-
coefficients. Recall that χ(M) can be calculated as

χ(M) = ∑
i
(−1)i rank(Hi(M; Z)) = ∑

i
(−1)i rank(Ci(M))

by Proposition 5.4. But since the groups Ci(M) are free abelian, the latter sum agrees with
∑i(−1)i dimF2(Ci(M)⊗F2). By an argument similar to that given in the proof of Proposition 5.4,
this agrees with ∑i(−1)i dimF2 Hi(M; F2).

But now by combining duality and universal coefficients, we have

dimF2 Hi(M; F2) = dimF2 Hn−i(M; F2) = dimF2 Hn−i(M; F2).

Since n is odd it follows that dimF2 Hi(M; F2) will always cancel dimF2 Hn−i(M; F2) in the formula
for χ(M). �

If M is closed and R-orientable, then consider the mapping

Hk(M; R)⊗Hn−k(M; R) −→ R

defined by (α, β) 7→ 〈α∪ β, µM〉. This defines a bilinear pairing on the cohomology groups. Recall
that, a bilinear pairing A⊗R B −→ R is called nonsingular if the adjoint maps A −→ HomR(B, R)
and B −→ HomR(A, R) are isomorphisms. The following result is a consequence of the Poincaré
duality theorem.

Proposition 9.61. Taking R = F a field, the above pairing is nonsingular (again assuming that M is
closed and F-orientable).

Proof. Let α 6= 0 ∈ Hk(M; F). We need to know that there is a β ∈ Hn−k(M; F) such that 〈α ∪
β, µM〉 6= 0. But recall that

〈α ∪ β, µM〉 = 〈α, β ∩ µM〉 = 〈α, D(β)〉.
Since α 6= 0 and the evaluation pairing Hk(M; F)⊗F Hk(M; F) −→ F is nonsingular by the home-
work, there must be some homology class γ ∈ Hk(M; F) such that 〈α, γ〉 6= 0. But since the duality
map is an isomorphism, we can write γ = D(β) for some β, which gives the result. �

The same result holds for R = Z if we quotient the homology and cohomology by their torsion
subgroups.

Example 9.62. M = RPn. We have already determined the cup product structure on H∗(RPn; F2),
but this was not so easy. We can instead obtain the cup product structure immediately from the
preceding results (recall that every manifold is F2-orientable). In the case of RP2, the previous
result says that the cup product

H1(RP2; F2)⊗H1(RP1; F2) −→ H2(RP2; F2)

cannot be zero, which was the only nontrivial step in determining the cohomology ring.
In the case of RP3, we learn that

H1(RP3; F2)⊗H2(RP3; F2) −→ H3(RP2; F2)

is nonzero. The only remaining question is whether x2 = x2
1. But we can determine this by

restricting along the inclusion RP2 ↪→ RP3. An induction proof now easily shows that

H∗(RPn; F2) ∼= F2[x1]/(xn+1
1 ).

By restricting to finite skeleta, it now follows that

H∗(RP∞; F2) ∼= F2[x1].
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Example 9.63. M = CPn. Since CPn is simply-connected, it is Z-orientable, so that Poincaré
Duality applies. Also, we know that all homology and cohomology is torsion-free. The preceding
result then tells us that

H2(CP2; Z)⊗H2(CP2; Z) −→ H4(CP2; Z)

is nonzero and further that there exists i ∈ Z such that z2 ∪ iz2 is a generator for H4. Certainly i
must be±1, so that z2

2 is a generator. Now a similar argument as above shows that zk
2 is a generator

in H2k(CPn; Z) whenever k ≤ n. We get

H∗(CPn; Z) ∼= Z[x2]/(xn+1
2 )

and
H∗(CP∞; Z) ∼= Z[x2].

Wed, Dec. 11

Last time, we mentioned the cohomology rings H∗(RPn; F2) and H∗(CPn; Z). There is a similar
answer for quaternionic projective space:

H∗(HPn; Z) ∼= Z[x4]/(xn+1
4 ),

where x4 is in degree 4.

Example 9.64. (Lens spaces) There is an odd-primary analogue of projective space known as a
Lens space. For p = 3, an example of a Lens space is M = S3/C3, which is a 3-manifold. This Lens
space has π1(M) ∼= Z/3 and is therefore orientable. It can be given a cell structure with a since
cell in each dimension from 0 to 3 and with differential alternating between 0 and 3. It follows that

Hi(M; Z) ∼=

 Z i = 0, 3
Z/3Z i = 1
0 else.

By Universal Coefficients, we compute

H0(M; F3) ∼= Hom(Z, F3) ∼= F3,

H1(M; F3) ∼= Hom(F3, F3)⊕ Ext(Z, F3) ∼= F3,
H2(M; F3) ∼= Hom(0, F3)⊕ Ext(F3, F3) ∼= F3,
H3(M; F3) ∼= Hom(Z, F3)⊕ Ext(0, F3) ∼= F3,

and
Hk(M; F3) ∼= 0, k > 3.

By graded commutativity, we must have that x2
1 = 0. But Poincaré Duality gives that x1 ∪ x2 is a

generator for H3. It follows that

H∗(M; F3) ∼= F3[x1, x2]/(x2
1, x2

2).

If we consider the higher dimensional lens spaces S2n−1/C3, the answer turns out to be

H∗(S2n−1/C3; F3) ∼= F3[x1, x2]/(x2
1, xn

2 ).

The same is true for any odd prime: we get

H∗(S2n−1/Cp; Fp) ∼= Fp[x1, x2]/(x2
1, xn

2 ).

The same results hold when n = ∞, so that we have

H∗(S∞/Cp; Fp) ∼= Fp[x1, x2]/(x2
1).

The infinite-dimensional Lens space S∞/Cp is an Eilenberg-Mac Lane space of type K(Z/p, 1).
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10. EQUIVARIANT ALGEBRAIC TOPOLOGY

Let G be a finite (or at least discrete) group. Then G-equivariant homotopy theory is the study,
up to homotopy, of spaces equipped with a G-action. In this setting, we restrict our attention to
G-equivariant maps, for which f (gx) = g · f (x).

Example 10.1. Suppose that V is a linear representation of G. This means that we have a homo-
morphism G −→ Gln(R). Then the one-point compactification of V is a sphere, denoted SV , with
a G-action.

Example 10.2. Of course, we can always take a trivial action (each element of G acts as the identity
map on your space). We write Sn for the n-sphere equipped with the trivial acrtion.

Example 10.3. We write σ for the sign representaiton of C2 = {±1} on R. Then Sσ is the circle,
where the C2-action is a reflection. Similarly, we have Snσ.

Example 10.4. We write λ for the rotation representation of C3 on R2. We take a generator to act
via rotation by 2π

3 . Then Sλ is a 2-sphere with two fixed poles and a rotation along the equator.

These representation spheres play an important role in equivariant homotopy theory.

Fri, Dec. 13

Definition 10.5. A G-homotopy between G-maps X −→ Y is simply a G-equivariant map h : X×
I −→ Y, where we take G to act trivially on I. This means that each h(−, t) : X −→ Y will be
G-equivariant. This also gives the notion of G-homotopy equivalence.

If X is a G-space and H ≤ G is a subgroup, we can consider the space XH ⊂ X of H-fixed
points. This is defined as

XH = {x ∈ X | h · x = x∀h ∈ H}.
Example 10.6. For G = C2 and X = Sσ, we have XC2 = S0 (the poles) and Xe = S1. For X = Snσ,
we again have XC2 = S0 but now Xe = Sn.

Example 10.7. We can let C2 act on R2 ∼= C as complex conjugation. This fixes the real axis but
acts as the sign representation on the imaginary axis. Thus C ∼= R⊕ σ as C2-representaitons. So
we can consider the C2-space X = S1+σ. Then XC2 = S1 and Xe = S2.

Example 10.8. For G = C3 and X = Sλ, we have XC3 = S0 (the poles) and Xe = S2.

A key observation is that any G-map f : X −→ Y will induced a map f H : XH −→ YH on
H-fixed points. This implies the following

Proposition 10.9. A G-homotopy equivalence f : X −→ Y induces homotopy equivalences f H : XH −→
YH for all H ≤ G.

Here is a typical example of an equivariant map that is not a G-homotopy equivalence.

Definition 10.10. Let EG be a G-space such that the underlying space is contractible and such that
the G-action is free.

Example 10.11. For G = C2, we do have a free action on Sn as the antiopodal map. This is not a
representation sphere, though it can be though of as an equator in S(n+1)σ. If we pass to n = ∞,
then the underlying space is also contractible.

Example 10.12. For G = C3, we have the rotation action on C, which restricts to an action on the
unit circle. More generally, we get a free action on the unit sphere in Cn. The unit sphere is of
dimension 2n− 1. Again we can let n go to ∞ to get EC3.
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Now we have a G-equivariant map EG −→ ∗ for any G, but we can see that it cannot be a
G-homotopy equivalence, since the fixed points EGG are empty, whereas ∗G = ∗.

There is also a notion of CW complex in the equivariant world. Here, the “cells” will look like
G/H × Dn. The G-orbits G/H play the role of “points” in the equivariant world.

Example 10.13. For the C2-sphere Sσ, we have two fixed 0-cells and a single free 1-cell.

Example 10.14. For the C3-sphere Sλ, we again have two fixed 0-cells. Now we can take a single
free 1-cell and a single free 2-cell.

There are several versions of equivariant homology/cohomology. The simplest is “Borel” ho-
mology/cohomology. The definition of Borel cohomology is

Hn
G,Borel(X; A) = Hn(EG×G X; A).

In particular, for X = ∗, we have

Hn
G,Borel(∗; A) = Hn(EG/G; A).

The quotient space EG/G is often written BG and is known as a “classifying space” for G. When
G = C2, this is S∞/C2 = RP∞.

The more interesting version of equivariant (co)homology is due to Bredon. One interesting
new feature of this version of cohomology is the type of “coefficient” that is used. Rather than a
single group, a “coefficient system” consists in a group M(H) for each subgroup H ≤ G, together
with “restriction” homomorphisms M(H) −→ M(K) whenever K ≤ H.

Example 10.15. The constant coefficient system at Z has M(H) = Z for each subgroup, with each
restriction being the identity.

Example 10.16. For G = Cp, let F be the coefficient system with F(Cp) = Z and F(e) = Z[Cp], the
group ring, and with restriction the diagonal inclusion.

Example 10.17. Foe G = Cp, let g be the coefficient system with g(Cp) = Z and g(e) = 0.

Then Bredon cohomology can be defined, essentially using homological algebra in the category
of coefficient systems. It turns out that we get

Hn
G(X; F) ∼= Hn(X; Z), Hn

G(X; g) ∼= Hn(XG; Z).
One of the reasons to pass to this more sophisticated version of cohomology is that it allows

for a version of equivariant Poincaré duality. But actually, we must improve it in the following
sense: we must pass from grading over the integers Z to grading over the real representation ring
RO(G), so that we can make sense of things like HV

G(X; A). And it turns out that in order to do
this, we must ask for extra structure on our coefficients A: we need this to extend to a “Mackey
functor”.
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