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2. Simplicial Sets

We begin with a quick review of simplicial sets and Kan complexes.
The category ∆ has objects the totally ordered sets n = {0, 1, . . . , n} for n ≥ 0. A

morphism m→ n is an order-preserving map. For each 0 ≤ i ≤ n, there are maps

di : n− 1→ n (cofaces)

and
si : n + 1→ n (codegeneracies),

where di omits the element i and si is the surjection such that si(i) = si(i + 1) = i.

Definition 1. A simplicial set is simply a contravariant functor X : ∆op → Set. We often
denote X(n) by Xn. A morphism of simplicial sets is simply a natural transformation. The
category of simplicial sets will be denoted sSet.

Example 1. For each n, we have a simplicial set ∆n given by

∆n
m = HomsSet(m,n).

The identity map n→ n gives an element of ∆n
n, which we denote ιn.

Example 2. For each n, we have a subcomplex ∂∆n ⊆ ∆n, which is the smallest simplicial
set containing di(ιn) for each 0 ≤ i ≤ n.

Example 3. For each n, we have a subcomplex Λn
k ⊆ ∆n, which is the smallest simplicial

set containing di(ιn) for each 0 ≤ i ≤ n, except for i = k.

Proposition 1. For each simplicial set X, there is a canonical isomorphism

colim
∆n→X

∆n ∼= X,

where the colimit ranges over all maps from a standard n-simplex (for all n) to X.

Definition 2. The geometric realization functor | − | : sSet→ Top is defined to be the
colimit-preserving functor satisfying |∆n| = ∆[n], where

∆[n] =
{
(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0,

n∑
i=0

xi = 1
}

is the geometric n-simplex.
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Definition 3. A map f : X → Y of simplicial sets is said to be a weak equivalence if
|f | : |X| → |Y | induces an isomorphism

|f |∗ : πn(|X|, x) ∼= πn(|Y |, |f |(x))

for all n ≥ 0 and all choices of basepoint x ∈ |X|.

Definition 4. A map f : X → Y is a Kan fibration if for every n ≥ 1 and 0 ≤ k ≤ n
there exists a lift in any diagram of the form

Λn
k

//
� _

��

X

f

��
∆n //

>>}
}

}
}

Y.
A simplicial set is called a Kan complex if the map X → ∗ is a fibration.

3. Fibrant replacement

The goal of the talk will be to introduce Kan’s fibrant replacement functor Ex∞. Thus
for every simplicial set X there is a monomorphic weak equivalence X ↪→ Ex∞(X) where
Ex∞(X) is a Kan complex.

Suppose given a simplicial set X together with a lifting problem Λn
k → X. Clearly when

n = 1 there is no trouble in obtaining a lift, so let us start with n = 2 and k = 0. Thus we
have a lifting problem

Λ2
0

//
� _

��

X.

∆2

To see how we might produce a lift, we pass to topology. The inclusion |Λ2
0| ↪→ |∆2| has a

retraction. Such a retraction, for instance, is given by adding a vertex v at the midpoint of
the edge 1→ 2 of ∆2, pushing v into 0, and dragging the rest of the simplex along with it.
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Thus we are beginning to see that we might be able to solve the Kan lifting problems by
subdividing simplices. We now proceed to make this into a formal argument.

3.1. Subdivision
The nondegenerate m-simplices of the standard n-simplex ∆n correspond to the subsets of
{0, . . . , n} of size m + 1. Thus, the nondegenerate simplices form a poset nd∆n, ordered by
inclusion.

Definition 5. The subdivision of ∆n is defined to be sd ∆n = Nnd∆n, the nerve of the
poset of nondegenerate simplices. For an arbitrary simplicial set X, we define

sd X = colim
∆n→X

sd ∆n.

Example 4. The subdivision of ∆1 is 0→ (01)← 1.
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Example 5. The subdivision of ∆2 is
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Definition 6. For X ∈ sSet, we define Ex(X) by

Ex(X)n = HomsSet(sd ∆n, X).

Note that since Yn
∼= HomsSet(∆n, Y ) for any simplicial set Y , the functor Ex : sSet →

sSet is right adjoint to sd.
Before defining the functor Ex∞, we need one last ingredient.

Definition 7. The last vertex map lv : sd ∆n → ∆n is the map induced by the map of
posets nd∆n → n given by

(i0, . . . , im) 7→ im.

This extends to give a map lv : sdX → X for any simplicial set. Adjoint to lv is a map
j : X → Ex(X).

For any simplicial set X, we may consider the directed system

X
jX−→ Ex(X)

jEx(X)−−−−→ Ex2(X)
jEx2(X)−−−−−→ . . . .

We denote the colimit by Ex∞(X), and this will be our fibrant replacement functor.

We will also need one other useful property of the subdivision functor. We claim that for
any function f : m→ n (so f is not necessarily order-preserving) we get a map f∗ : sd∆m →
sd ∆n of simplicial sets. This holds since f still induces a map of posets nd∆m → nd∆n.

4. Properties of Ex∞

In this section we will state and prove important properties of Ex∞. Note that from the
construction, Ex∞ is a functor.

Properties of Ex∞:
(1) Ex∞(X) is a Kan complex for any simplicial set X
(2) jX : X → Ex∞(X) is an acyclic cofibration for any simplicial set X
(3) Ex∞ preserves fibrations
(4) Ex∞ preserves finite limites
(5) Ex∞ preserves 0-simplices

Proof of the properties:
(1) It suffices to prove the following:

Lemma 1. For any horn λ : Λn
k → Ex(X), there exists an extension as in the diagram

Λn
k

λ //
� _

��

Ex(X)

jEx(X)

��
∆n //___ Ex2(X).
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Before proving the lemma, we show that it is not true that we can find extensions in
diagrams of the form

Λn
k

//
� _

��

X

j

��
∆n //___ Ex(X)

Let us look in particular at the case n = 2, k = 0, X = Λ2
0, with the horizontal map

being the identity. Then the problem becomes equivalent to finding a lift in the diagram

sd Λ2
0

lv //
� _

��

Λ2
0

sd ∆2

<<y
y

y
y

Such a lift would necessarily send the barycenter to the vertex 2, so the edge from the
vertex 1 to the barycenter would have nowhere to go in Λ2

0.

Proof of Lemma 1. Note that λ : Λn
k → Ex(X) factors as Λn

k

η−→ Ex(sdΛn
k)

Ex(λ̃)−−−→ Ex(X).
Thus it suffices to obtain an extension as in the diagram

Λn
k

η //
� _

��

Ex(sdΛn
k)

j
��

Ex(λ̃) // Ex(X)

j

��
∆n //___ Ex2(sd Λn

k)
Ex2(λ̃)// Ex2(X)

But the composite j ◦ η : Λn
k → Ex2(sd Λn

k) agrees, by naturality of j, with

Λn
k

j−→ ExΛn
k

Ex η−−→ Ex2 sd Λn
k .

Thus by adjointness it suffices to find an extension in the diagram

sd Λn
k

lv //
� _

��

Λn
k

η

��
sd ∆n //___ Ex sd Λn

k

For each q-simplex σ = (σ0, . . . , σq) ∈ sd(∆n)q with σi ∈ ∆n
ni

, we define a function
fσ : q→ n by

fσ(i) =
{

σi(ni) if σi 6= dk(ιn), ιn
k if σi = dk(ιn) or ιn.

We emphasize that fσ need not be a morphism in ∆. However, as observed above, fσ

nevertheless induces a map sd∆q → sd ∆n. One can check that this map lands in sdΛn
k .

�

(2) Since acyclic cofibrations are closed under (possibly infinite) compositions, it suffices to
show that X → Ex(X) is an acyclic cofibration. It is clear that X → Ex(X) is a cofibration;
indeed, ∆n is a retract of sd∆n, so X is a retract of Ex(X). Let i : X → RX be any fibrant
replacement for X (for example, S•|X|). If PY denotes the path space of a based simplicial
set, then the “evaluation at 1” map p : PRX → RX is a fibration (we have chosen some
basepoint for X and thus also for RX). Using that sSet is right proper, we get that the
map ĩ in the pullback diagram
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i−1PRX
ĩ //

p̃

����

PRX
p

����
X

i // RX
is a weak equivalence. Thus i−1PRX ' ∗ and we have a fibre sequence

ΩRX → i−1PRX
p̃−→ X.

Since Ex preserves fibrations (3) and pullbacks (4), we get a comparison of fibre sequences

ΩRX

j

��

// i−1PRX

j

��

p̃ // // X

j

��
ExΩRX // Ex i−1PRX

Ex p̃ // // ExX.
At this point, we would like to use the long exact sequence in homotopy groups to argue
inductively, but since not all of the simplicial sets appearing in the diagram are fibrant,
this option is not available to us. To get around this, we pass to geometric realizations and
use Quillen’s result that the realization of a Kan fibration is a Serre fibration to obtain an
analogous diagram

|ΩRX|

j

��

// |i−1PRX|

j

��

|p̃| // // |X|

j

��
|ExΩRX| // |Ex i−1PRX|

|Ex p̃|// // |ExX|.
of fibration sequences in topology.

Lemma 2. If Y ' ∗ then Ex(Y ) ' ∗.

We will prove the lemma below, but first we use the lemma to finish the above argument.
One reduces by induction to showing that π0(|X|) ∼= π0(|Ex(X)|). But for any simplicial
set Y , π0(|Y |) ∼= π0(Y ) = Y0/(∼), where ∼ is the equivalence relation on Y0 generated by
h∼, where x

h∼ y if there exists α ∈ Y1 with d0(α) = y and d1(α) = x. But, as we have seen,
a 1-simplex of ExX is simply a zig-zag

x0 → x1 ← x2

of 1-simplices in X, so the relation ∼ on Ex(X)0 = X0 and the relation on X0 coincide.

Proof of Lemma 2. We have already seen that π0(Y ) ∼= π0(Ex(Y )). We claim that
π1(Ex(Y )) = 0 as well. The fundamental group π1(Ex(Y )) = π1(|Ex(Y )|) has generators

strings of 1-simplices of Ex(Y ) satisfying appropriate endpoint conditions. Let 0 α−→ 1
β←− 2

be an element of Ex(Y )1. But it is not difficult to see that

[0 α−→ 1
β←− 2] = [0 α−→ 1 1←− 1] · [1 1−→ 1

β←− 2] = [0 α−→ 1 1←− 1] · [2 β−→ 1 1←− 1]−1.

This last element is the image of [α] · [β]−1 from Y . Thus we have in fact shown that
π1(Y ) � π1(Ex(Y )). But π1(Y ) = 0, so π1(Ex(Y )) = 0. It now suffices, by the Hurewicz
theorem, to show that H∗(Ex(Y ); Z) = 0. Using an acyclic models argument, one can show
the stronger statement that

j∗ : H∗(Y ; Z) ∼= H∗(Ex(Y ); Z).
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In applying the acyclic models argument, one uses that any simplex σ : ∆n → Ex(Y )
factors through Ex(σ̃) : Ex(sd(∆n)) → Ex(Y ). One also needs that Ex(sd(∆n)) ' ∗, but
this follows since sd(∆n) is homotopy equivalent to ∆n and Ex preserves products (4). �

(3) We first show that Ex preserves fibrations. By adjointness, it suffices to show that
the subdivision functor takes the generating acyclic cofibrations Λn

k ↪→ ∆n to acyclic cofi-
brations. It is clear that sdΛn

k ↪→ sd ∆n is a cofibration(=monomorphism). Moreover,
the geometric realizations are contractible, so the map in question is necessarily a weak
equivalence. That Ex∞ preserves fibrations now follows from smallness of Λn

k and ∆n.

(4) Ex preserves all small limits because it has a left adjoint. The conlusion follows since
finite limits commute with filtered colimits.

(5) It is clear that Ex preserves 0-simplices since sd ∆0 ∼= ∆0. It follows that Ex∞ also
preserves 0-simplices.

5. Comparison with S•| − |

The functor S•| − | : sSet → sSet is also a fibrant replacement functor, and it is certainly
easier to describe than Ex∞. In addition, S•| − | preserves fibrations and finite limits, like
Ex∞. However, S•| − | certainly does not preserve 0-simplices. In general S•|X| will be
much bigger than Ex∞(X). In addition, Ex∞ has the advantage that one does not need to
use the category of spaces in order to define it; this makes it more transportable to other
contexts.


